Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preparing a human mission to Mars via Antarctica and Toulouse

16.06.2003


A human mission to Mars may still be some time away, but scientists are already aware of the many hazards that must be overcome if the dream is to become a reality. One particular cause for concern is the potential for physiological and psychological problems that could arise from the conditions of weightlessness, isolation and confinement experienced during a journey that could last six months or more.



To address these concerns ESA, in cooperation with the French space agency CNES, NASA and two Antarctic research organisations, is seeking proposals from scientists wishing to participate in two pioneering ground-based studies to simulate some of the side effects of extended periods of space flight.

Concordia


The first of these Research Announcements is for opportunities to conduct medical, physiological and psychological research at the Concordia station, a new scientific base that is being built in Antarctica by IPEV - the French Polar Institute, and PNRA - the Italian Antarctic Programme.

Although proposals put forward under this Research Announcement may or may not be relevant to space exploration, the space agencies recognise that Concordia’s unique environment will be invaluable for preparatory activities related to future human Mars missions.

“As one of the most isolated places on Earth, Concordia will provide an excellent analogue environment to replicate aspects of a mission to Mars,” said study leader Oliver Angerer. “For eight to nine months of the year the base will be completely cut off, so the occupants will have to learn to be fully autonomous.”

From the selected proposals, an integrated research programme will be created with a start date in spring 2006. The programme will be aimed at increasing knowledge of human adaptability to extreme environments - isolation, confinement, climate, altitude - and improving medical care in isolated locations.

International long-term bed rest study

In the second Research Announcement, ESA and the French Space Agency CNES are collaborating with NASA to solicit research proposals to address two of the cornerstones of the European Programme for Life and Physical Sciences and Applications utilising the International Space Station (ELIPS).



Muscle and bone physiology: the effects of changes of load on muscles and bone mass
Integrated physiology: the understanding of blood pressure and heart regulation
Transatlantic cooperation for this effort is welcome and NASA has issued an equivalent Research Announcement specifically for US investigators.

As opportunities for investigating human physiology in orbit are very limited, it is planned to simulate the effects of long-term microgravity on the ground by studying the human body’’s response to head-down tilt bed rest over a period of 60-90 days. The study, which will take place at a specialised French bed rest facility of the Institute for Space Medicine (MEDES) in Toulouse, will also evaluate preventative strategies and countermeasures to combat the associated adverse effects.
Male astronauts and volunteers predominated during previous studies in simulated and real microgravity, so the planned study for 2004/05 will investigate about 25 female volunteers (intervention groups and control group) and, if scientifically justified, a male control group consisting of about seven volunteers. This should reveal the differences and similarities in the response of the female and male physiology to musculoskeletal unloading.


“Essential driving factors behind the two research studies are oriented towards both application and exploration,” explained study leader Peter Jost. “In this way, the results will benefit the ESA Life Sciences Programme, with important spin-offs for medical science. Ultimately, advanced strategies will be developed to further improve health and safety during long-term stays on the International Space Station, and to facilitate a human mission to Mars.”

Oliver Angerer | alfa
Further information:
http://www.esa.int/export/esaHS/SEMOS4T1VED_index_0.html

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>