Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Donor immune cells attack metastatic breast cancer

03.06.2003


In patients with metastatic breast cancer, immune cells from a genetically matched donor can attack and shrink tumors, researchers from the National Cancer Institute (NCI) announced today at the Annual Meeting of the American Society of Clinical Oncology in Chicago. This is the first time researchers have clearly demonstrated this type of immune response, known as a graft-versus-tumor effect, acting against breast cancer.


"Graft-versus-tumor effects have been shown to be useful in treating cancers of the blood, such as leukemia and lymphoma. Breast cancer, however, has generally been resistant to immune-based therapies," said Michael Bishop, M.D., of NCI’s Center for Cancer Research, the lead author on the study. "Although the tumors of patients in this study were not completely eliminated by the treatment, the responses we saw provide hope that immunotherapies for breast cancer are worth pursuing."

Tumor regression has been observed in the past in some patients with metastatic breast cancer who received stem cell transplants, but it was unclear whether immune cells had attacked the tumor or the tumor was shrinking in response to chemotherapy drugs administered prior to the transplant. The design of this clinical trial, however, allowed researchers to attribute tumor regression to a true graft-versus-tumor effect.

Each of the 13 patients in the Phase I trial had received multiple previous treatments for metastatic breast cancer. In the study, patients first received conventional doses of chemotherapy to kill cancer cells and reduce the cells in their immune system so that donor cells could replace them. They then received stem cells from the blood of HLA-matched siblings. HLA-matched donor cells, which have the same set of proteins (known as human leukocyte-associated antigens) on their surface as the patient’s own cells, are much more likely to be accepted by the patient’s body.



T cells, specialized immune cells that recognize and kill foreign cells that have invaded the body, were removed from the pool of donated stem cells prior to transplant. These T cells were given to patients later, in an initial infusion 42 days after stem cell transplant, then in two follow-up infusions over the next two months. Because T cells were not given immediately following chemotherapy, researchers were able to attribute any tumor cell death to the transplanted T cells rather than to anti-tumor effects of the chemotherapy drugs.

In four patients, tumors shrunk at least 50 percent in response to the treatment. A minor response was seen in three of the other patients. Although not all patients in the study responded to treatment, and none of the tumors was eliminated entirely, the results of the trial provide evidence that transplanted T cells can attack tumors in patients with metastatic breast cancer. Researchers are optimistic that further study could lead to effective immunotherapies for these patients.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>