Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies of liver transplant patients off anti-rejection drugs have altered cell profile

03.06.2003


University of Pittsburgh researchers report results in American Journal of Transplantation and at American Transplant Congress, suggesting blood test to determine who can be weaned not far off



Liver transplant patients who are off all immunosuppression and those who are undergoing withdrawal of their anti-rejection drugs have higher concentrations of a special immune system cell than those patients who have failed attempts at weaning or who have a history of organ rejection, report University of Pittsburgh researchers. Those off drugs have the same cellular profile as normal, healthy volunteers, who the researchers also studied.

Results of the study are published in the June issue of the American Journal of Transplantation and are being presented today at the American Transplant Congress, the joint scientific meeting of the American Society of Transplant Surgeons and the American Society of Transplantation running through June 4 at the Marriott Wardman Park Hotel in Washington, D.C.


The researchers hope the findings will bring them one step closer to developing a simple blood test predictive of transplant tolerance – the immune system’s full acceptance of a transplanted organ – and of which patients can be successfully weaned off all drugs. However, the researchers caution that further studies will be needed to verify their results.

"Developing such a test or series of tests would be of considerable value in identifying those patients who might be safely weaned off anti-rejection therapy. Our finding a higher incidence of a subtype of a certain dendritic cell in our weaned and nearly weaned patients is a positive step toward this goal," said lead author George Mazariegos, M.D., associate professor of surgery at the Thomas E. Starzl Transplantation Institute and the University of Pittsburgh School of Medicine.

Looking for the presence of different kinds of dendritic cells, the researchers found that patients off all anti-rejection drugs and those in the process of drug withdrawal had significantly more of a beneficial kind of dendritic cell and fewer numbers of the more harmful dendritic cells, a cellular profile that was similar to normal, healthy non-transplant patients who served as a control group. Compared to those who required daily doses of anti-rejection drugs – those who failed at being weaned or who had a history of rejection episodes – the patients off drugs or nearing that target also had a much higher ratio of the good cells to bad cells.

These so-called beneficial dendritic cells are immature or precursor dendritic cells that derive from plasmacytoid T cells (pDC2). While dendritic cells, a rare type of white blood cell that is present in all tissues, are usually known for their ability to identify and present antigens, or foreign substances, to other immune system cells that are programmed to destroy the antigen, not until recently did researchers identify subtypes like the pDC2 that have the opposite effect. These appear to regulate the immune response and determine that a frontline attack against the organ by T cells is unwarranted. "It is quite exciting to identify the presence of this dendritic cell subtype, which we have noted in laboratory models, in patients who by virtue of their being off immunosuppression are tolerant of their transplanted organs," stated Angus Thomson, Ph.D., D.Sc., professor of surgery and immunology at the Thomas E. Starzl Transplantation Institute and University of Pittsburgh School of Medicine, and senior author.

The published pilot study involved six patients who had been weaned for a mean of 3.3 years, the longest for nearly eight years. Of these, two had been weaned through a physician-controlled protocol, three were taken off the drugs because of serious infectious disease concerns, and one patient had stopped taking the drugs on his own. A second group of patients consisted of 23 patients undergoing the weaning process, and the third group was comprised of 11 patients taking maintenance doses of immunosuppression. Six of these 11 had failed at weaning and five had a history of rejection episodes. Thirteen healthy non-transplant patients served as controls.

At ATC, Dr. Mazariegos is reporting update results that were obtained in eight weaned patients, 26 patients in the process of being weaned and 16 patients who required maintenance immunosuppression. Of the weaned patients, three were taken off for emergent reasons, three were weaned through the protocol and two were noncompliant patients who stopped on their own.

According to the authors, their findings involving dendritic cells, and those published by the team last year that looked at genetic profiles of key regulatory proteins that regulate the immune system, are the first to definitively give clues to the make-up of patients who are able to be off all immunosuppression.

"While the initial results indicate there may be some correlation with the presence of ’good dendritic cells’ and immune unresponsiveness, a longer, more complete investigation must now be performed if these cells are to be validated as a surrogate marker of tolerance," said Terry Strom, M.D., co-chair of the Immune Tolerance Network (ITN) Assay Group.

To determine the validity of the dendritic cell profile as a possible test to predict successful weaning, the researchers plan to examine a larger group of liver transplant patients in whom weaning is being considered.

Typically, a life-long regimen of anti-rejection drugs is required to prevent the transplanted organ from being attacked by the patient’s immune system. Such drugs can cause serious complications, such as tumor growth, and make patients more susceptible to infections. The risks associated with long-term immunosuppressive therapies are one of the key limiting factors of successful organ transplantation.

This study was performed as a project of the ITN, a seven-year clinical research project headquartered at the University of California, San Francisco and supported by the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases and the Juvenile Diabetes Research Foundation.

Dr. Thomson is principal investigator of the Pittsburgh-based ITN study and Dr. Mazariegos is a co-investigator. Other researchers include Adriana Zeevi, Ph.D., co-principal investigator, and Jorge Reyes, M.D., a co-investigator.


CONTACT:
Lisa Rossi (cell 412-916-3315)
Michele Baum
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
RossiL@upmc.edu
BaumMD@upmc.edu

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>