Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat zapps bone tumors

13.05.2003


A team of radiologists and orthopedic specialists at Johns Hopkins Medicine has successfully used heat generated by electrode-tipped probes to destroy painful, benign bone tumors in eight of nine patients in a clinical study.



The results of the study, published in the March issue of the Journal of Vascular Interventional Radiology, suggests a need for further research to confirm the effectiveness of percutaneous radiofrequency for treating osteoid osteomas.

In the study, all eight patients achieved complete pain relief after thin probes were inserted through the skin into the core of the bone tumor, and radiofrequency energy was used to produce enough heat to destroy the tumor at its biological core. Five patients underwent the procedure with guidance provided by a new type of fast CT scanner incorporating CT fluoroscopy at 13 frames a second in three places at once.


Osteoid osteomas account for up to 12 percent of all benign bone tumors and occur primarily in children and young adults, according to Kieran Murphy, M.D., director of neurointerventional radiology at Hopkins and a member of the study team. While not life-threatening, the tumors can be extremely painful.

Standard treatment consists of nonsteroidal anti-inflammatory drugs. However, when pain is severe and/or long-term conventional drug treatment causes complications, surgical removal is the usual alternative.

Murphy notes that while the reported success rate for such surgery is very high, it carries some risks. "Depending on the size of the bone tumor, bone fractures can occur at the site of the tumor removal and bone grafting may be required," he says.

While all eight of the patients benefitted, three achieved success only after re-treatment. Initial failures were attributed to the use of fluoroscopy alone for tumor localization, which provided less precise tumor images than did CT fluoroscopy. One patient eventually required surgical removal of the tumor to achieve complete pain relief. No immediate or delayed complications were observed in any of the patients treated.

"Based on these early results, it appears that CT fluoroscopy offers the most precise imaging method for localizing the most critical area of the tumor in which to place the heat probe," says Murphy. "Combining the minimally invasive approach of radiofrequency ablation and the enhanced imaging guidance of CT fluoroscopy gives us a potentially powerful new alternative for treating these tumors."

Gary Stephenson | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>