Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique may help people with asthma

29.04.2003


A new magnetic resonance (MR) imaging technique using hyperpolarized helium lights up the lungs’ airways, providing, for the first time, clear resolution of even the smaller, seventh-generation airways. The technique, dynamic hyperpolarized 3He (helium) MR imaging, should help physicians better understand and treat asthma, as well as other chronic obstructive pulmonary diseases. Researchers from Brigham and Women’s Hospital reported their findings in the May issue of the journal Radiology.



"Other non-radioactive techniques have only been able to image lung peripheries," said the study’s principal investigator, Mitchell S. Albert, Ph.D., assistant professor of radiology at Harvard Medical School and director of the hyperpolarized noble gas MRI laboratory at Brigham and Women’s Hospital in Boston. "Dynamic hyperpolarized helium MR imaging offers a completely noninvasive and safe method of studying the airways."

Dr. Albert collaborated with other researchers to pioneer hyperpolarized noble gas MR imaging, a technique he conceptualized in 1991 while researching the effect of anesthesia on the brain. "Our new technique provides information on ventilation, while depicting structure and function of the airways," Dr. Albert said. "Other non-radioactive imaging modalities do not provide this type of information."


For the study, researchers evaluated the degree of distal airway visualization in six healthy adult volunteers, ranging in age from 22 to 40, who inhaled one breath of hyperpolarized helium gas during MR imaging. Visualization was achieved using a fast gradient-echo pulse sequence during inhalation. The resulting images showed differential contrast of both distal airways and lung periphery.

The findings offer hope for asthma research, diagnosis and treatment. Currently, models predict where asthma closure and constriction occur in the airway tree, however, the airways during an asthma attack have never been visualized, according to Dr. Albert.

"Researchers do not yet know if asthma causes a global closure and constriction of the airways, whether it happens selectively within certain parts of the bronchial tree, or if it affects one or both lungs," Dr. Albert said. "With this technique we hope to actually see ventilation constriction and closure of the airways in people with asthma," he said. "Symptoms can be correlated with the information from the images to assist in treatment of asthma patients."

Dr. Albert and his team also plan to study bronchodilator treatment to see where bronchodilation occurs. This type of information will be beneficial to drug development and testing, he noted.

"We are developing tools to measure and study airway diameters during constriction and dilation in people with asthma," Dr. Albert commented. "In the weeks to come we will start dynamic hyperpolarized imaging of patients with asthma at Brigham and Women’s Hospital."

The new approach can easily be applied in a clinical setting. "Most hospitals have MRI machines that can be converted to image helium. Consequently, this imaging technique may soon be readily available to many more patients," Dr. Albert added.


###
Radiology is a monthly scientific journal devoted to clinical radiology and allied sciences. The journal is edited by Anthony V. Proto, M.D., School of Medicine, Virginia Commonwealth University, Richmond, Virginia. Radiology is owned and published by the Radiological Society of North America Inc. (http://radiology.rsnajnls.org)

The Radiological Society of North America (RSNA) is an association of more than 33,000 radiologists, radiation oncologists and physicists in medicine dedicated to education and research in the science of radiology. The Society’s headquarters are located at 820 Jorie Boulevard, Oak Brook, Ill. 60523-2251. (http://www.rsna.org)

"Distal Airways in Humans: Dynamic Hyperpolarized 3He MR Imaging--Feasibility." Collaborating with Dr. Albert on this study were Angela C. Tooker, M. Eng., Kwan Soo Hong, Ph.D., Erin L. McKinstry, B.S., Philip Costello, M.D., and Ferenc A. Jolesz, M.D., from Brigham and Women’s Hospital in Boston.

Maureen Morley | EurekAlert!
Further information:
http://radiology.rsnajnls.org
http://www.rsna.org

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>