Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers test polymer reliability for medical implants

24.03.2003


Sascha Abramson has been investigating new methods to ensure that polymer medical implants in the human body don’t fail. Abramson looked at degradable polymers, ones the body can ultimately absorb, to gain a deeper understanding of how and why their structures change – crucial parts of a puzzle that must be solved for polymers to perform predictably and successfully in medical implants.



Her research was conducted as a postdoctoral associate at Rutgers’ New Jersey Center for Biomaterials in the laboratory of Joachim Kohn, Board of Governors Professor of Chemistry and Chemical Biology, at Rutgers, The State University of New Jersey. Kohn and Abramson co-authored a paper on her findings presented in New Orleans today at the 225th American Chemical Society (ACS) national meeting.

Abramson points out that polymers or plastics are different from other materials that have solid, liquid and gaseous phases. Some polymers exhibit two solid states – a rubbery state and a glassy state. “There is a transition in polymers where they go from a hard, glassy state to a rubbery state. They leave their glassy state when they cross a threshold temperature we call the glass transition temperature,” said Abramson.


She cited the example of cold chewing gum being hard in the package, but softening in the mouth as it warms up above its glass transition temperature and goes into its rubbery state.

The research discussed in the ACS presentation focused on how changes in a polymer’s immediate environment and alterations in its glass transition temperature might affect the material’s stability once it becomes part of a medical implant.

Abramson said that traditionally polymer testing has often been done on dry materials. “The point I am making is that we can’t look only at the dry glass transition temperature. That’s not going to be relevant once you put polymers in the body,” Abramson stated. “In the body they get wet, they hydrate or absorb water, and their glass transition temperature can drop to or below body temperature. What was a very hard glassy material outside the body, now becomes soft.

“We know that hydration can also affect the degradability of the polymer,” Abramson observed. “If we use these polymers for tissue engineering where we want the material to eventually be absorbed harmlessly into the body, hydration-induced shifts in the glass transition temperature can affect how fast the material degrades, in addition to its structural stability in the body.”

She stressed that the glass transition temperature needs to be above body temperature for a load-bearing implant, while a lower glass transition temperature may be more desirable in applications, such as artificial skin, where the material needs to be pliable.

Abramson said her studies of hydrated degradable polymers are preliminary but contends that their importance lies in the fact that this was the first time anyone had ever looked at these materials in this context. “I think we need to understand what is going on in a hydrated material because that’s essentially what is happening in the body,” she said.

Another aspect of her investigations considered the phenomenon of enthalpic relaxation. In these studies, Abramson again focused on the glass transition temperature, using its rise to track the relaxation of molecules over time.

Abramson explained that polymers are made up of very long chain molecules, and these molecules move and they twist around each other. “Over a period of time, these molecules can relax, releasing their pent-up energy in a process called enthalpic relaxation,” she said. “This can lead to a polymer becoming brittle and fracturing easily, which is something we do not want to see in load-bearing medical implants, such as artificial hips.”

Bill Haduch | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>