Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jackson researchers identify a gene implicated in oxidative stress and neurodegeneration

26.09.2002


Oxidative stress is implicated in a fast-growing list of human conditions, from the superficial (e.g., wrinkled skin) to the deadly: diseases such as cancer, heart disease and neurodegenerative disorders including Lou Gehrig’s disease (amyotrophic lateral sclerosis or ALS).



Researchers at The Jackson Laboratory announced that they have located a gene that protects certain brain and retinal neurons from oxidative stress, and prevents neurodegeneration.

Many normal metabolic functions produce free radicals--highly unstable forms of oxygen. Despite their notoriety, these molecules in fact have several beneficial roles, such as helping white blood cells attack bacteria, viruses and virus-damaged cells. Oxidative stress occurs when the amount of free radicals exceeds the normal antioxidant capacity of a cell, leading to cell damage.


The research team, headed by Staff Scientist Susan Ackerman, Ph.D., discovered that mice from a strain called harlequin have a mutation in the apoptosis-inducing factor (Aif) gene, causing a severe reduction in AIF production. The AIF protein serves as a scavenger of free radicals in certain brain and retinal neurons. Because harlequin mice have much lower levels of AIF, neurons in these mice undergo oxidative stress. The researchers demonstrate that oxidative stress causes neurons to duplicate their DNA in a process known as re-entering the cell cycle. But the neurons cannot successfully divide. They die in the attempt.

The results of Dr. Ackerman’s team’s work, published in the journal Nature, provide a genetic model of neurodegeneration mediated by oxidative stress. They also demonstrate a direct connection between cell cycle re-entry and oxidative stress in an aging central nervous system.

To date, ALS is the one neurodegenerative disorder known to be caused by oxidative damage to neurons. However, oxidative stress has been identified as a possible cause of several later-onset neurodegenerative diseases, and there are also indications that the diseased neurons of Alzheimer’s patients have duplicated their DNA prior to dying.

The harlequin mouse provides the first model for studying the role of oxidative stress on aberrant cell cycle reentry and subsequent death of neurons.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>