Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jackson researchers identify a gene implicated in oxidative stress and neurodegeneration

26.09.2002


Oxidative stress is implicated in a fast-growing list of human conditions, from the superficial (e.g., wrinkled skin) to the deadly: diseases such as cancer, heart disease and neurodegenerative disorders including Lou Gehrig’s disease (amyotrophic lateral sclerosis or ALS).



Researchers at The Jackson Laboratory announced that they have located a gene that protects certain brain and retinal neurons from oxidative stress, and prevents neurodegeneration.

Many normal metabolic functions produce free radicals--highly unstable forms of oxygen. Despite their notoriety, these molecules in fact have several beneficial roles, such as helping white blood cells attack bacteria, viruses and virus-damaged cells. Oxidative stress occurs when the amount of free radicals exceeds the normal antioxidant capacity of a cell, leading to cell damage.


The research team, headed by Staff Scientist Susan Ackerman, Ph.D., discovered that mice from a strain called harlequin have a mutation in the apoptosis-inducing factor (Aif) gene, causing a severe reduction in AIF production. The AIF protein serves as a scavenger of free radicals in certain brain and retinal neurons. Because harlequin mice have much lower levels of AIF, neurons in these mice undergo oxidative stress. The researchers demonstrate that oxidative stress causes neurons to duplicate their DNA in a process known as re-entering the cell cycle. But the neurons cannot successfully divide. They die in the attempt.

The results of Dr. Ackerman’s team’s work, published in the journal Nature, provide a genetic model of neurodegeneration mediated by oxidative stress. They also demonstrate a direct connection between cell cycle re-entry and oxidative stress in an aging central nervous system.

To date, ALS is the one neurodegenerative disorder known to be caused by oxidative damage to neurons. However, oxidative stress has been identified as a possible cause of several later-onset neurodegenerative diseases, and there are also indications that the diseased neurons of Alzheimer’s patients have duplicated their DNA prior to dying.

The harlequin mouse provides the first model for studying the role of oxidative stress on aberrant cell cycle reentry and subsequent death of neurons.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>