Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New patented prophylactic mesh for the repair of defects in the abdominal wall

18.06.2008
Scientists from the University of Alcalá (UAH) have designed a prosthesis made of silicon and polypropylene shaped like an “upside down T” that substantially reduces cases of incisional hernias.

A hernia is produced when the content of the abdominal cavity protrudes through a weakened natural orifice of the abdominal wall such as the inguinal canal, the umbilical area, the epigastrium or a previous incision in the abdomen such as from a surgical operation.

The hernia manifests itself as a bulging lump since the internal lining of the abdomen protrudes in what is called a hernial sac that shrinks or grows depending on the effort exerted by the affected individual. Hernias are more frequent in the groin or navel areas and in the area of an old surgical scar, and they never improve or disappear naturally; on the contrary, they tend to grow. Not only painful but unaesthetic too, hernias can produce complications such as bowel obstructions and strangulations.

Primary hernias are produced by structural defects in tissues, while the incisional hernias arise from a previous aperture in the abdominal wall, usually the scar of a previous surgery. Irrespective of the techniques used, different types of sutures or medical devices used to hold the abdominal wall, the number of incisional hernias has been constant over the last decade. One of the most susceptible areas for their appearance is the linea alba, especially when oblique-transverse fibres are sectioned, which is what occurs in the longitudinal laparotomy procedures. The likelihood of a patient developing incisional hernias increases with associated risks, such as advanced age, neoplasia related surgery, obesity and related chronic pathologies.

Presented with these circumstances, a research group from the University of Alcalá managed by Professor Juan Manuel Bellón from the department of surgery of the UAH has developed and patented a new device to prevent the occurrence of incisional hernias. This prevention is carried out by the incorporation of prosthesis into the suture of the abdominal wall which is designed to increase the cohesive forces of the scar. The new design and concept of the prosthesis, named Laparomesh has the shape of a upside down T and is made with silicone and polypropylene, which are biomaterials that will not be absorbed by the body.

The goal of the Laparomesh is to create a reinforcement much like a tendon in the linea alba that would efficiently consolidate the suture of the laparotomy and significantly reduce the cases of incisional hernias. Different to the other prostheses of its type, the design by Professor Bellon and his team is placed neither above nor below, but it encloses both apertures of the abdominal wall, attaching itself to the different anatomical planes by means of a polypropylene suture.

Professor Bellón, stated that the current average number of cases of incisional hernias is around 15% to 20%, and it is estimated to reduce these numbers to 3%-4% using this newly patented mesh.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>