Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New patented prophylactic mesh for the repair of defects in the abdominal wall

18.06.2008
Scientists from the University of Alcalá (UAH) have designed a prosthesis made of silicon and polypropylene shaped like an “upside down T” that substantially reduces cases of incisional hernias.

A hernia is produced when the content of the abdominal cavity protrudes through a weakened natural orifice of the abdominal wall such as the inguinal canal, the umbilical area, the epigastrium or a previous incision in the abdomen such as from a surgical operation.

The hernia manifests itself as a bulging lump since the internal lining of the abdomen protrudes in what is called a hernial sac that shrinks or grows depending on the effort exerted by the affected individual. Hernias are more frequent in the groin or navel areas and in the area of an old surgical scar, and they never improve or disappear naturally; on the contrary, they tend to grow. Not only painful but unaesthetic too, hernias can produce complications such as bowel obstructions and strangulations.

Primary hernias are produced by structural defects in tissues, while the incisional hernias arise from a previous aperture in the abdominal wall, usually the scar of a previous surgery. Irrespective of the techniques used, different types of sutures or medical devices used to hold the abdominal wall, the number of incisional hernias has been constant over the last decade. One of the most susceptible areas for their appearance is the linea alba, especially when oblique-transverse fibres are sectioned, which is what occurs in the longitudinal laparotomy procedures. The likelihood of a patient developing incisional hernias increases with associated risks, such as advanced age, neoplasia related surgery, obesity and related chronic pathologies.

Presented with these circumstances, a research group from the University of Alcalá managed by Professor Juan Manuel Bellón from the department of surgery of the UAH has developed and patented a new device to prevent the occurrence of incisional hernias. This prevention is carried out by the incorporation of prosthesis into the suture of the abdominal wall which is designed to increase the cohesive forces of the scar. The new design and concept of the prosthesis, named Laparomesh has the shape of a upside down T and is made with silicone and polypropylene, which are biomaterials that will not be absorbed by the body.

The goal of the Laparomesh is to create a reinforcement much like a tendon in the linea alba that would efficiently consolidate the suture of the laparotomy and significantly reduce the cases of incisional hernias. Different to the other prostheses of its type, the design by Professor Bellon and his team is placed neither above nor below, but it encloses both apertures of the abdominal wall, attaching itself to the different anatomical planes by means of a polypropylene suture.

Professor Bellón, stated that the current average number of cases of incisional hernias is around 15% to 20%, and it is estimated to reduce these numbers to 3%-4% using this newly patented mesh.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>