Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silica smart bombs deliver knock-out to bacteria

27.02.2008
Bacteria mutate for a living, evading antibiotic drugs while killing tens of thousands of people in the United States each year. But as concern about drug-resistant bacteria grows, one novel approach under way at the University of North Carolina at Chapel Hill seeks to thwart the bug without a drug by taking a cue from nature.

Mark Schoenfisch and his lab of analytical chemists at UNC have created nano-scale scaffolds made of silica and loaded with nitric oxide (NO) – an important molecule in mammals that plays a role in regulating blood pressure, neurotransmission and fighting bacterial infections, among other vital functions.

“There was evidence that nitric oxide kills bacteria, but the difficult part involved storing it in a manner such that it could be delivered to bacterial cells,” said Evan Hetrick, a doctoral student in Schoenfisch’s lab and lead author on a paper in the February issue of the American Chemical Society’s journal ACS Nano.

While the body constantly produces NO, and can ramp up its production to fight infection, sometimes it can’t produce enough to mount a sufficient defense. Previous research using small molecules to deliver NO hit roadblocks – controlling the release of the compound was difficult and the molecules were potentially toxic to healthy cells in the body.

“With silica scaffolds, nitric oxide stores easily and we could very carefully control the release,” said Schoenfisch, an associate professor of chemistry in UNC’s College of Arts and Sciences.

Schoenfisch, Hetrick and their colleagues tested their silica scaffolds head-to-head with small molecules against the bacteria Pseudomonas aeruginosa, which is commonly found in burn and other wound infections.

NO delivered by both methods completely killed the bacteria. But the silica nanoparticles delivered the NO right to the bacteria’s doorstep. In contrast, the small molecules released NO indiscriminately, and the concentration of NO is lost as it makes its way toward bacterial cells.

“With the silica particles, more NO actually reached the inside of the cells, enhancing the efficacy of the nanoparticles compared to the small molecule. So, the overall amount of NO needed to kill bacteria is much less with silica nanoparticles,” Schoenfisch said. “And, with small molecules, you’re left with potentially toxic byproducts,” Schoenfisch said. Using mouse cells, they proved that the silica nanoparticles weren’t toxic to healthy cells, but the small molecules were.

Schoenfisch has a history of success with NO-releasing materials. His lab has successfully created a variety of coatings for different biomedical applications. Such materials hold promise as anti-infective coatings and as methods to improve the body’s integration of biological implants – such as hip or knee joints – and implanted sensors that relay various biological measures, such as blood glucose or oxygen concentrations.

The amount and rate of NO release are easily modified and controlled by using these different silica nanoparticles. “Release rates are a function of the precursors used to make the nanoparticles,” Schoenfisch said. “It depends entirely on how we build the silica structures.”

Future research will include studying additional bacterial strains, active targeting, preferential uptake and biodistribution studies.

Clinton Colmenares | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>