Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silica smart bombs deliver knock-out to bacteria

27.02.2008
Bacteria mutate for a living, evading antibiotic drugs while killing tens of thousands of people in the United States each year. But as concern about drug-resistant bacteria grows, one novel approach under way at the University of North Carolina at Chapel Hill seeks to thwart the bug without a drug by taking a cue from nature.

Mark Schoenfisch and his lab of analytical chemists at UNC have created nano-scale scaffolds made of silica and loaded with nitric oxide (NO) – an important molecule in mammals that plays a role in regulating blood pressure, neurotransmission and fighting bacterial infections, among other vital functions.

“There was evidence that nitric oxide kills bacteria, but the difficult part involved storing it in a manner such that it could be delivered to bacterial cells,” said Evan Hetrick, a doctoral student in Schoenfisch’s lab and lead author on a paper in the February issue of the American Chemical Society’s journal ACS Nano.

While the body constantly produces NO, and can ramp up its production to fight infection, sometimes it can’t produce enough to mount a sufficient defense. Previous research using small molecules to deliver NO hit roadblocks – controlling the release of the compound was difficult and the molecules were potentially toxic to healthy cells in the body.

“With silica scaffolds, nitric oxide stores easily and we could very carefully control the release,” said Schoenfisch, an associate professor of chemistry in UNC’s College of Arts and Sciences.

Schoenfisch, Hetrick and their colleagues tested their silica scaffolds head-to-head with small molecules against the bacteria Pseudomonas aeruginosa, which is commonly found in burn and other wound infections.

NO delivered by both methods completely killed the bacteria. But the silica nanoparticles delivered the NO right to the bacteria’s doorstep. In contrast, the small molecules released NO indiscriminately, and the concentration of NO is lost as it makes its way toward bacterial cells.

“With the silica particles, more NO actually reached the inside of the cells, enhancing the efficacy of the nanoparticles compared to the small molecule. So, the overall amount of NO needed to kill bacteria is much less with silica nanoparticles,” Schoenfisch said. “And, with small molecules, you’re left with potentially toxic byproducts,” Schoenfisch said. Using mouse cells, they proved that the silica nanoparticles weren’t toxic to healthy cells, but the small molecules were.

Schoenfisch has a history of success with NO-releasing materials. His lab has successfully created a variety of coatings for different biomedical applications. Such materials hold promise as anti-infective coatings and as methods to improve the body’s integration of biological implants – such as hip or knee joints – and implanted sensors that relay various biological measures, such as blood glucose or oxygen concentrations.

The amount and rate of NO release are easily modified and controlled by using these different silica nanoparticles. “Release rates are a function of the precursors used to make the nanoparticles,” Schoenfisch said. “It depends entirely on how we build the silica structures.”

Future research will include studying additional bacterial strains, active targeting, preferential uptake and biodistribution studies.

Clinton Colmenares | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>