Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forgetful mice show the way to treating Alzheimer’s

25.02.2008
RIKEN researchers find link with protein build-up

The accumulation of a phosphate-laden, soluble form of tau protein in an important memory center of ageing mice is associated with loss of nerve cell connections or synapses and deterioration of memory, RIKEN researchers have found. Not only does this constitute the first sign of the onset of Alzheimer’s disease (AD), they suggest, but reduction or prevention of the build-up of such hyperphosphorylated tau may well lead to an effective treatment.

Two consistent biochemical hallmarks of AD in the brain are the presence of deposits of misfolded proteins known as amyloid beta plaques and insoluble aggregates of hyperphosphorylated tau proteins inside nerve cells called neurofibrillary tangles (NFT). Tau proteins help stabilize the internal skeleton of cells by interacting with microtubules. They are regulated by phosphates that can attach at various points along the molecule. Both NFTs and amyloid beta plaques form well before the onset of AD, and the role they play has been the subject of intense scrutiny.

In a recent paper in The EMBO Journal (1), researchers from RIKEN’s Brain Science Institute in Wako detail their work using transgenic mice to which a gene for human tau protein had been added together with a promoter to stimulate its activity in the nerve cells of the forebrain after birth. The researchers found that the human tau protein became hyperphosphorylated as the mice aged, but did not form NFTs. There was also no evidence of nerve cell loss.

Using the Morris water maze, whereby mice learn the position of a submerged escape platform in a tank of water by remembering cues to its position, the researchers determined that the transgenic mice also displayed impaired learning ability as they grew older compared with normal mice (Fig. 1). And with manganese-enhanced MRI imaging, a new technique for analyzing brain activity in small animals, they were able to match this with reduced activity and fewer synapses in the entorhinal cortex of the brain, critical to spatial memory. All of this occurred without NFT formation and before any possible appearance of amyloid beta plaques.

“Once NFTs form, we cannot rescue the nerve cells,” says research team spokesman, Akihiko Takashima. “But before the formation of NFTs, tau proteins form small soluble aggregates, and we know of several enzymes that can inhibit this. So we are now trying to detect the aggregates by means of the small compounds which bind to them or through positron emission tomography.”

Reference

1. Kimura, T., Yamashita, S., Fukuda, T., Park, J-M., Murayama, M., Mizoroki, T., Yoshiike, Y., Sahara, N. & Takashima, A. Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. The EMBO Journal 26, 5143–5152 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>