Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forgetful mice show the way to treating Alzheimer’s

25.02.2008
RIKEN researchers find link with protein build-up

The accumulation of a phosphate-laden, soluble form of tau protein in an important memory center of ageing mice is associated with loss of nerve cell connections or synapses and deterioration of memory, RIKEN researchers have found. Not only does this constitute the first sign of the onset of Alzheimer’s disease (AD), they suggest, but reduction or prevention of the build-up of such hyperphosphorylated tau may well lead to an effective treatment.

Two consistent biochemical hallmarks of AD in the brain are the presence of deposits of misfolded proteins known as amyloid beta plaques and insoluble aggregates of hyperphosphorylated tau proteins inside nerve cells called neurofibrillary tangles (NFT). Tau proteins help stabilize the internal skeleton of cells by interacting with microtubules. They are regulated by phosphates that can attach at various points along the molecule. Both NFTs and amyloid beta plaques form well before the onset of AD, and the role they play has been the subject of intense scrutiny.

In a recent paper in The EMBO Journal (1), researchers from RIKEN’s Brain Science Institute in Wako detail their work using transgenic mice to which a gene for human tau protein had been added together with a promoter to stimulate its activity in the nerve cells of the forebrain after birth. The researchers found that the human tau protein became hyperphosphorylated as the mice aged, but did not form NFTs. There was also no evidence of nerve cell loss.

Using the Morris water maze, whereby mice learn the position of a submerged escape platform in a tank of water by remembering cues to its position, the researchers determined that the transgenic mice also displayed impaired learning ability as they grew older compared with normal mice (Fig. 1). And with manganese-enhanced MRI imaging, a new technique for analyzing brain activity in small animals, they were able to match this with reduced activity and fewer synapses in the entorhinal cortex of the brain, critical to spatial memory. All of this occurred without NFT formation and before any possible appearance of amyloid beta plaques.

“Once NFTs form, we cannot rescue the nerve cells,” says research team spokesman, Akihiko Takashima. “But before the formation of NFTs, tau proteins form small soluble aggregates, and we know of several enzymes that can inhibit this. So we are now trying to detect the aggregates by means of the small compounds which bind to them or through positron emission tomography.”

Reference

1. Kimura, T., Yamashita, S., Fukuda, T., Park, J-M., Murayama, M., Mizoroki, T., Yoshiike, Y., Sahara, N. & Takashima, A. Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. The EMBO Journal 26, 5143–5152 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>