Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forgetful mice show the way to treating Alzheimer’s

25.02.2008
RIKEN researchers find link with protein build-up

The accumulation of a phosphate-laden, soluble form of tau protein in an important memory center of ageing mice is associated with loss of nerve cell connections or synapses and deterioration of memory, RIKEN researchers have found. Not only does this constitute the first sign of the onset of Alzheimer’s disease (AD), they suggest, but reduction or prevention of the build-up of such hyperphosphorylated tau may well lead to an effective treatment.

Two consistent biochemical hallmarks of AD in the brain are the presence of deposits of misfolded proteins known as amyloid beta plaques and insoluble aggregates of hyperphosphorylated tau proteins inside nerve cells called neurofibrillary tangles (NFT). Tau proteins help stabilize the internal skeleton of cells by interacting with microtubules. They are regulated by phosphates that can attach at various points along the molecule. Both NFTs and amyloid beta plaques form well before the onset of AD, and the role they play has been the subject of intense scrutiny.

In a recent paper in The EMBO Journal (1), researchers from RIKEN’s Brain Science Institute in Wako detail their work using transgenic mice to which a gene for human tau protein had been added together with a promoter to stimulate its activity in the nerve cells of the forebrain after birth. The researchers found that the human tau protein became hyperphosphorylated as the mice aged, but did not form NFTs. There was also no evidence of nerve cell loss.

Using the Morris water maze, whereby mice learn the position of a submerged escape platform in a tank of water by remembering cues to its position, the researchers determined that the transgenic mice also displayed impaired learning ability as they grew older compared with normal mice (Fig. 1). And with manganese-enhanced MRI imaging, a new technique for analyzing brain activity in small animals, they were able to match this with reduced activity and fewer synapses in the entorhinal cortex of the brain, critical to spatial memory. All of this occurred without NFT formation and before any possible appearance of amyloid beta plaques.

“Once NFTs form, we cannot rescue the nerve cells,” says research team spokesman, Akihiko Takashima. “But before the formation of NFTs, tau proteins form small soluble aggregates, and we know of several enzymes that can inhibit this. So we are now trying to detect the aggregates by means of the small compounds which bind to them or through positron emission tomography.”

Reference

1. Kimura, T., Yamashita, S., Fukuda, T., Park, J-M., Murayama, M., Mizoroki, T., Yoshiike, Y., Sahara, N. & Takashima, A. Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. The EMBO Journal 26, 5143–5152 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>