Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating causes of asthma attacks: New sensor system monitors environmental exposure

24.01.2008
Researchers at the Georgia Tech Research Institute (GTRI) have developed a sensor system that continuously monitors the air around persons prone to asthma attacks. Worn in the pockets of a vest, the new system could help researchers understand the causes of asthma attacks.

“We are investigating whether we can go back after an asthma attack and see what was going on environmentally when the attack started,” said Charlene Bayer, a GTRI principal research scientist.

This research was supported by the U.S. Department of Housing and Urban Development and initial funding from the GTRI Independent Research and Development (IRAD) program.

Although no one fully understands why certain people get asthma, doctors know that once a person has it, his/her lungs can overreact to environmental stimuli causing chest tightness or breathlessness, known as an asthma attack.

The new sensor system measures airborne exposure to formaldehyde, carbon dioxide, ozone, nitrogen dioxide, temperature, relative humidity and total volatile organic compounds (VOCs). VOCs are emitted as gases from products such as paints, cleaning supplies, pesticide formulations, building materials and furnishings, office equipment and craft materials.

In addition to detecting the seven environmental stimuli mentioned above, a special mesh filter collects particles. A pump pulls air through the filter so that the quantity of particles can be measured at the end of the sampling period. The composition of the collected particulate can also be analyzed in the laboratory.

The battery-powered system fits into the pocket of a vest and contains commercially available sensors that were integrated into a single system by Mark Jones, chief executive officer of Keehi Technologies.

“The device weighs less than one pound including batteries and it takes a measurement of air every two minutes, stores the data in on-board memory and then sleeps to conserve battery power,” said Jones.

Bayer and GTRI Research Scientist Robert Hendry calibrated and tested the sensors in a large room-sized chamber that simulates real-world environmental conditions inside buildings. Coupled with sensitive mass spectrometers, the chamber allows the changing indoor air chemistry to be studied in detail.

The sensor system is designed to be comfortably worn in the pockets of a vest throughout the day and kept at the bedside while sleeping at night. Another vest pocket contains an electronic peak flow meter to periodically measure pulmonary function. When experiencing an asthma attack, the vest wearer notes what time it occurred and Bayer can examine the levels of the chemical compounds at that time.

Six adult volunteers have tested the vest for comfort and the effectiveness of the sensor system under actual use conditions. And that has already brought benefits for one volunteer, whose vest detected higher volatile organic exposures in his home than anywhere else. That led researchers to discover a pollutant pathway from the volunteer’s basement garage into the living areas that was allowing automobile exhaust and gasoline fumes to invade the house.

With future funding, Bayer hopes to develop a smaller and more sensitive sensor system, test the current vest in population studies of asthmatic children and develop software to process the population studies data as it is collected.

“With this system we can determine what children are exposed to at home, at school and outside where they play,” said Bayer. “Chances are there are some overreaching compounds that seem to trigger asthma attacks in more children.”

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>