Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Study Shows Why Sleep is Needed to Form Memories

13.02.2009
First-of-its-kind study shows how brain connections strengthen during sleep

If you ever argued with your mother when she told you to get some sleep after studying for an exam instead of pulling an all-nighter, you owe her an apology, because it turns out she's right. And now, scientists are beginning to understand why.

In research published this week in Neuron, Marcos Frank, PhD, Assistant Professor of Neuroscience, at the University of Pennsylvania School of Medicine, postdoctoral researcher Sara Aton, PhD, and colleagues describe for the first time how cellular changes in the sleeping brain promote the formation of memories.

"This is the first real direct insight into how the brain, on a cellular level, changes the strength of its connections during sleep," Frank says.

The findings, says Frank, reveal that the brain during sleep is fundamentally different from the brain during wakefulness.

"We find that the biochemical changes are simply not happening in the neurons of animals that are awake," Frank says. "And when the animal goes to sleep it's like you’ve thrown a switch, and all of a sudden, everything is turned on that's necessary for making synaptic changes that form the basis of memory formation. It's very striking."

The team used an experimental model of cortical plasticity – the rearrangement of neural connections in response to life experiences. "That's fundamentally what we think the machinery of memory is, the actual making and breaking of connections between neurons,” Frank explains

In this case, the experience Frank and his team used was visual stimulation. Animals that were young enough to still be establishing neural networks in response to visual cues were deprived of stimulation through one eye by covering that eye with a patch. The team then compared the electrophysiological and molecular changes that resulted with control animals whose eyes were not covered. Some animals were studied immediately following the visual block, while others were allowed to sleep first.

From earlier work, Frank's team already knew that sleep induced a stronger reorganization of the visual cortex in animals that had an eye patch versus those that were not allowed to sleep. Now they know why.

A molecular explanation is emerging. The key cellular player in this process is a molecule called N-methyl D-aspartate receptor (NMDAR), which acts like a combination listening post and gate-keeper. It both receives extracellular signals in the form of glutamate and regulates the flow of calcium ions into cells.

Essentially, once the brain is triggered to reorganize its neural networks in wakefulness (by visual deprivation, for instance), intra- and intercellular communication pathways engage, setting a series of enzymes into action within the reorganizing neurons during sleep.

To start the process, NMDAR is primed to open its ion channel after the neuron has been excited. The ion channel then opens when glutamate binds to the receptor, allowing calcium into the cell. In turn, calcium, an intracellular signaling molecule, turns other downstream enzymes on and off.

Some neural connections are strengthened as a result of this process, and the result is a reorganized visual cortex. And, this only happens during sleep.

“To our amazement, we found that these enzymes never really turned on until the animal had a chance to sleep," Frank explains, "As soon as the animal had a chance to sleep, we saw all the machinery of memory start to engage." Equally important was the demonstration that inhibition of these enzymes in the sleeping brain completely prevented the normal reorganization of the cortex.

Frank stresses that this study did not examine recalling memories. For example, these animals were not being asked to remember the location of their food bowl. "It's a mechanism that we think underlies the formation of memory.” And not only memory; the same mechanism could play a role in all neurological plasticity processes.

As a result, this study could pave the way to understanding, on a molecular level, why humans need sleep, and why they are so affected by the lack of it. It could also conceivably lead to novel therapeutics that could compensate for the lack of sleep, by mimicking the molecular events that occur during sleep.

Finally, the study could lead to a deeper understanding of human memory. Though how and even where humans store long-lasting memories remains a mystery, Frank says, "we do know that changes in cortical connections is at the heart of the mystery. By understanding that in animal models, it will bring us close to understanding how it works in humans."

The research was funded by the National Institutes of Health, the National Sleep Foundation, and L'Oreal USA, and also involved researchers at the Penn’s Center for Sleep and Respiratory Neurobiology, and the School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>