Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathway Identified in Human Lymphoma Points Way to New Blood Cancer Treatments

22.11.2012
A pathway called the “Unfolded Protein Response,” or UPR, a cell’s way of responding to unfolded and misfolded proteins, helps tumor cells escape programmed cell death during the development of lymphoma.

Research, led by Lori Hart, Ph.D., research associate and Constantinos Koumenis, Ph.D., associate professor,and research division director in the Department of Radiation Oncology, both from the Perelman School of Medicine, University of Pennsylvania, and Davide Ruggero, Ph.D., associate professor, Department of Urology, University of California, San Francisco, shows for the first time that the UPR is active in patients with human lymphomas and mice genetically bred to develop lymphomas.

Importantly, when the UPR is inactivated, lymphoma cells readily undergo cell death. Their findings appear online in the Journal of Clinical Investigation and will appear in the December 2012 issue.

“The general implications of our work are that components of this pathway may be attractive anti-tumor targets, especially in lymphomas,” says Koumenis. “Indeed, an enzyme called PERK, a kinase that we found to play a central role in UPR, is already being targeted by several groups, in academia and pharmaceutical companies with specific inhibitors.”

The cancer-causing gene c-Myc paradoxically activates both cell proliferation and death. When the cell becomes cancerous, c-Myc–induced death is bypassed, promoting tumor formation. “A critical feature of c-Myc-overexpressing cells is an increased rate of protein synthesis that is essential for Myc’s ability to cause cancer,” says Tom Cunningham, Ph.D., a postdoctoral fellow in the Ruggero lab. “Myc tumor cells use this aberrant production of proteins to block apoptosis and activate the UPR. These cancer cells depend on Myc-induced increases in protein abundance to survive. Therefore, targeting protein synthesis downstream of Myc oncogenic activity may represent a promising new therapeutic window for cancer treatment,” adds Ruggero.

The accumulation of unfolded proteins in the endoplasmic reticulum, an inner cell component where newly made proteins are folded, initiates a stress program, the UPR, to support cell survival. Normally, UPR kicks in when there is an imbalance in the number of proteins that need to be folded and chaperones, specialized proteins that help fold them.

Analysis of mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, the two teams, in collaboration with additional labs in the US and Europe, demonstrated that Myc specifically activated one arm of the UPR, leading to increased cell survival by autophagy.

Autophagy is a survival pathway allowing a cell to recycle damaged proteins when it's under stress and reuse the damaged parts to fuel further growth. Cancer cells might be addicted to autophagy, since this innate response may be a critical means by which the cells survive the nutrient limitation and lack of oxygen commonly found within tumors.

Inhibition of one protein, PERK, in the UPR arm studied, significantly reduced Myc-induced autophagy and tumor formation. What’s more, drug- or genetic-mediated inhibition of autophagy increased Myc-dependent cell death.

“Our findings establish a role for UPR as an enhancer of c-Myc–induced lymphomas and suggest that inhibiting UPR may be particularly effective against cancers characterized by c-Myc overexpression,” says Koumenis. “In this context the UPR essentially acts as one of the cell’s rheostats to counterbalance Myc’s runaway cell replication nature and its pro-cell-death tendencies.”

However, Koumenis indicates that further research is needed on the potential effects of PERK inhibition on normal tissues: “Although data from our lab and other groups suggest that PERK inhibition in tumors grown in animals is feasible, other studies suggest that PERK plays a critical role in the function of secretory tissues such as the pancreas. Carefully testing the effects of new PERK inhibitors in animal models of lymphoma and other malignancies in the next couple of years should address this question and could open the way for new clinical trials with such agents.”

Funding for this research came from the Leukemia and Lymphoma Society Scholar, America Cancer Society grant 121364-PF-11-184-01-TBG; and National Cancer Institute grants R01 CA094214; R01 CA139362; and R01 CA140456.

This work included several laboratories, including those of Alan Diehl and Serge Fuchs, both from Penn; Andrei Thomas-Tikhonenko from CHOP and Penn; and Ian Mills from the Oslo University Hospital.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>