Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nobel Laureate Bruce Beutler on molecular sensors as a trigger for autoimmune disease

Body's molecular sensors may trigger autoimmune disease findings presented in article coauthored by 2011 Nobel Laureate Bruce Beutler, M.D.

Bruce Beutler, MD, a co-recipient of the 2011 Nobel Prize in Medicine, has coauthored an article describing a novel molecular mechanism that can cause the body to attack itself and trigger an autoimmune disease. The article is published online ahead of print in Journal of Interferon & Cytokine Research, a peer-reviewed journal published by Mary Ann Liebert, Inc. ( and is available free at

In the article, entitled "Intracellular Nucleic Acid Sensors and Autoimmunity," Argyrios Theofilopoulos, Dwight Kono, Bruce Beutler, and Roberto Baccala, The Scripps Research Institute (La Jolla, California), review the scientific evidence that supports the role of molecular sensors located inside cells in the initiation not only of protective and inflammatory immune responses, but also in an autoimmune response. These sensors recognize nucleic acid signatures that may be shared by foreign pathogens and the body's own DNA and RNA.

Dr. Beutler is one of three recipients awarded the Nobel Prize in Physiology and Medicine. He shares half of the prize with Jules Hoffman, PhD for their discoveries related to how the body's immune system fights disease through the activation of an innate immune response. The third recipient, Ralph Steinman, MD, who died before the Nobel Prizes were announced, previously published an article in AIDS Research and Human Retroviruses. Mary Ann Liebert, Inc. congratulates the three winners for the work and contributions to medicine for which they are being recognized.

Journal of Interferon & Cytokine Research, led by Co-Editors-in-Chief Ganes C. Sen, PhD, Chairman, Department of Molecular Genetics, Cleveland Clinic Foundation, and Thomas A. Hamilton, PhD, Chairman, Department of Immunology, Cleveland Clinic Foundation, is an authoritative peer-reviewed journal published monthly in print and online that covers all aspects of interferons and cytokines from basic science to clinical applications. Journal of Interferon & Cytokine Research is the Official Journal of the International Society for Interferon and Cytokine Research. Tables of content and a free sample issue may be viewed online at

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Viral Immunology, AIDS Research and Human Retroviruses, and DNA and Cell Biology. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available at

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215

Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101

Tracy Kasten | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>