Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers develop first successful laboratory model for studying hepatitis C

05.08.2013
System represents major advance in studying virus

By differentiating monkey stem cells into liver cells and inducing successful infection, researchers from the Icahn School of Medicine at Mount Sinai have shown for the first time that the hepatitis C virus (HCV) can replicate in monkeys, according to research published in the journal Gastroenterology.

The new findings may lead to the first new animal model and provide new avenues for developing treatments and vaccines for this disease, which impacts more than three million people in the United States.

Scientists have tried for decades to develop animal models to study HCV, but the virus was incapable of infecting any species except for humans and chimpanzees. With a recent National Institutes of Health-imposed moratorium restricting chimpanzee research, the Mount Sinai research team turned to a close relative of chimpanzees and humans—macaques. Led by Matthew Evans, PhD, and Valerie Gouon-Evans, PhD, of Mount Sinai, the research team sought to find out why previous attempts to infect macaques with HCV failed.

Dr. Gouon-Evans, who is Assistant Professor of in the Department of Developmental and Regenerative Biology at Mount Sinai, worked with a team at the Fred Hutchison Cancer Research Center in Seattle to differentiate macaque stem cells into liver cells. Dr. Evans, who is an Assistant Professor in the Department of Microbiology, and his team then attempted to infect these cells with HCV in a petri dish. They found that these differentiated cells were able to support HCV infection and replication, although not as effectively as in human liver cells.

"Now that we know that HCV infection in macaque cells is possible, we wanted to find out why it only worked in liver cells that were derived from stem cells," said Dr. Gouon-Evans. "By identifying where in the viral life cycle the infection is dysfunctional, we can develop an effective animal model of HCV."

Dr. Evans and his team found that HCV was less efficient at entering macaque cells to initiate infection compared to human cells because changes in the macaque form of a certain cell surface receptor rendered it less functional than the human version. This cell entry block could be overcome by expressing the human version of this receptor in macaque cells. Furthermore, HCV infection of normal macaque cells was greatly enhanced by changes to the virus that loosened its requirements for that receptor.

"Our discovery shows that by manipulating either host or viral genetics we can efficiently infect macaque cells," said Dr. Evans. "These findings may open doors for the field of HCV research, lead to new animal models, and hopefully vaccines and therapies."

Next, Dr. Evans plans to take these experiments out of petri dishes by attempting to infect macaques in vivo with the mutant HCV that can use the receptors this animal naturally expresses. If successful, this work would provide a new, much-needed animal model for HCV studies and vaccine development.

This work was supported by the Pew Charitable Trust.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org/

Further reports about: HCV HCV infection animal models human cell liver cells stem cells

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>