Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbubbles improve myocardial remodelling after infarction

21.02.2013
Researchers at Bonn University Hospital demonstrate that ultrasound can ameliorate the sequelae of a myocardial infarction

Scientists from the Bonn University Hospital successfully tested a method in mice allowing the morphological and functional sequelae of a myocardial infarction to be reduced. Tiny gas bubbles are made to oscillate within the heart via focused ultrasound - this improves microcirculation and decreases the size of the scar tissue. The results show that the mice, following myocardial infarction, have improved cardiac output as a result of this method, as compared to untreated animals. The study is now being presented in the professional journal PLOS ONE.

Every year in Germany, approximately 280,000 people suffer a myocardial infarction; more than 52,000 die as a result. Due to an occluded vessel, parts of the heart muscle no longer have sufficient circulation and the tissue dies off. These regions are not replaced by new heart muscle cells but instead by scar tissue – this generally causes the pump function of the heart to decrease following an infarction. Scientists from the Bonn University Hospital have now successfully tested a new method on mice with which scar tissue can be reduced and cardiac output increased.

Microbubbles are made to oscillate within the heart

"There are attempts to treat the scar tissue with gene therapy or stem cells - by contrast, we have chosen a physical approach to treatment," reports Adj. Professor Dr. med. Alexander Ghanem from the Department of Cardiology of the Bonn University Hospital. The researchers injected a total of 17 mice which had previously had a myocardial infarction with microscopically small, gas-filled bubbles in the bloodstream. Once the microbubbles reached the heart, they were made to vibrate there using focused ultrasound. "Through this mechanical stimulation, the circulation of the area of the infarction is improved - and the scar shrinks," says the cardiac specialist.

Treated animals demonstrate ameliorated post-infarction remodelling

The scientists compared the results of the mice treated with the microbubbles to those of a control group. Two weeks after the myocardial infarction, there was expected worsening of heart function in the control group due to the maturing of the scar tissue. In contrast, the mice treated with the microbubbles did not develop any cardiac insufficiency. Jonas Dörner, the first author of the study, summarizes the results: "The pumping function was significantly better in the treated animals as compared to the control group; there was also a significantly smaller amount of decayed heart muscle tissue." Along with the Department of Cardiology, the Departments of Cardiac Surgery and Anesthesiology and the Institute of Physiology took part in the investigations.

Ultrasound treatment stimulates growth hormones

The scientists sought the causes of the positive treatment success which is, however, unexplained to date. Following ultrasound treatment of the mice, it was demonstrated that the amount of the body's own growth hormones significantly increased in the heart. "This is evidently the reason why the scar formation decreased as a result of the oscillating microbubbles," says Dr. Ghanem. The scientists now hope that humans will also be able to eventually be treated with the microbubble-ultrasound method, however further investigations are still needed. "Potentially, all patients who have had an acute myocardial infarction are eligible for this follow-up treatment," explains the cardiologist of the Bonn University Hospital. Interestingly, microbubbles are already used as a diagnostic contrast agent.

Patent for novel ultrasound method filed

The study, conducted with support from the BONFOR funding program of the Medical Faculty of Bonn University and the German Heart Foundation [Deutsche Herzstiftung e.V.], gave rise to a patent application. "Together with the company Philips Medical, we developed a novel ultrasonic probe which enables a standardized impulse discharge in the heart," reports the cardiologist. The special feature is that two ultrasound sources linked together are contained in one hybrid ultrasonic probe: one with low frequency for the focused stimulation of the microbubbles in the target organ and one with higher frequency for imaging. In this way, it can be very precisely determined where the scar tissue and the microbubbles are located. "This study demonstrates again that university research inspires technological developments in medicine," says Dr. Ghanem.

Publication: Ultrasound-mediated stimulation of microbubbles after acute myocardial infarction and reperfusion ameliorates left-ventricular remodelling in mice via improvement of borderzone vascularisation, PLOS ONE, DOI: 10.1371/journal.pone.0056841, Internet: Internet: http://dx.plos.org/10.1371/journal.pone.0056841

Contact information:

Adj. Professor Dr. med. Alexander Ghanem
Department of Cardiology
Bonn University Hospital
Tel. +49 228 28715507
E-Mail: ghanem@uni-bonn.de

Alexander Ghanem | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>