Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medication Slows Progression of Myopia in Children

26.08.2008
Daily treatment with a medication called pirenzepine can slow the rate of progressive myopia, or nearsightedness, in children, reports a study in the August issue of the Journal of AAPOS (American Association for Pediatric Ophthalmology and Strabismus).

Led by Dr. R. Michael Stiatkowski of Dean McGee Eye Institute/University of Oklahoma Department of Ophthalmology, the researchers evaluated the effects of pirenzepine in children with myopia. Myopia—sometimes called nearsightedness—is a condition in which focus on near objects is good, but distant objects appear blurry. Caused by a problem with the length of the eyeball or the curvature of the cornea, myopia gets worse over time in many children.

In the study, children with myopia were randomly assigned to treatment with pirenzepine gel or an inactive placebo gel. After a year of treatment, the average increase in myopia was significantly less for children using pirenzepine. The new study presents the final results in 84 patients who continued treatment for a total of two years: 53 with pirenzepine and 31 with placebo.

Although myopia worsened in both groups of children, the rate of progression was slower with pirenzepine. At the end of two years, myopia increased by an average of 0.58 diopters in children using pirenzepine versus 0.99 diopters with placebo. (All children initially had "moderate" myopia, with an average refractive error of about -2.00 diopters.)

New glasses are generally prescribed when myopia worsens by at least 0.75 diopters. During the study, 37 percent of children using pirenzepine met this cut-off point compared with 68 percent of the placebo group. With glasses, all children had about 20/20 vision at both the beginning and end of the study.

Pirenzepine treatment was generally safe, although eleven percent of children stopped using it because of side effects such as eye irritation. The drug also caused mild dilation of the pupils. The amount of change in the length of the eyeball was not significantly different between groups, although more research is needed to determine whether pirenzepine affects the growth of the eyes.

Myopia is the leading cause of loss of vision worldwide, affecting at least 25 percent of U.S. adults. Effective treatments to prevent or delay progressive myopia may reduce the risk of serious complications such as detached retina and glaucoma—even for children with moderate myopia, the risk of retinal detachment is increased by up to four times.

Treatments to slow worsening myopia could also have important quality-of-life benefits. For example, while children with -1.00 diopter of myopia may need glasses only part-time, those with -2.00 diopters will probably need glasses for all activities, including school and sports.

Previous studies have suggested that a drug called atropine can delay progression of myopia. The new results show that pirenzepine—a related drug with fewer side effects—is also safe and effective for this purpose.

More research will be needed before pirenzepine can be widely recommended for children with myopia. Key questions include the long-term effects and optimal length of pirenzepine treatment. In addition, more convenient and practical methods of drug administration may help to overcome some of the disadvantages of pirenzepine gel.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

Further reports about: Myopia Strabismus eyeball nearsightedness pirenzepine progressive myopia

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>