Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism offers promising new approach for harnessing the immune system to fight cancer

06.08.2013
St. Jude Children’s Research Hospital researchers discover how to unleash the immune system against cancer in mice without triggering autoimmune reactions

St. Jude Children’s Research Hospital scientists have discovered a way to target the immune system to shrink or eliminate tumors in mice without causing autoimmune problems. Researchers also found evidence that the same mechanism may operate in humans. The study appears in the advance online edition of Nature.

The findings provide a new target for ongoing efforts to develop immunotherapies to harness the immune system to fight cancer and other diseases.

The work focused on white blood cells called regulatory T cells. These specialized cells serve as the immune system’s police force, working to control inflammation and guard against autoimmune and inflammatory disease. Regulatory T cells can, however, interfere with the immune system’s ability to fight cancer.

In this study, investigators identified a mechanism that boosts the ability of regulatory T cells to cause problems by blocking an effective anti-tumor immune response. The same process, however, plays no role in maintaining immune balance or preventing the misguided immune attack on healthy tissue that leads to autoimmune problems, researchers reported. Blocking this mechanism led to the elimination or dramatic reduction of melanoma by the immune system in mice, without causing the autoimmune and inflammatory problems often associated with current cancer-treatment efforts that target immune regulators, scientists said.

“Regulatory T cells are a major barrier to effective anti-tumor immunity,” said the study’s corresponding author, Dario Vignali, Ph.D., vice chair of the St. Jude Department of Immunology. “We have identified a mechanism that enhances the ability of regulatory T cells to put the brakes on the immune response in tumors but plays no role in immune system maintenance. For the first time, we may now have an opportunity to selectively target the activity of regulatory T cells for treatment of cancer without inducing autoimmune or inflammatory complications.”

The mechanism is built around two proteins. One, semaphorin-4a (Sema4a), is carried on the surface of various immune cells that can spark inflammation. The other, neuropilin-1 (Nrp1), is carried on the surface of regulatory T cells.

Vignali and his colleagues used a variety of molecular and cellular techniques to show that Sema4a binding to Nrp1 turns on a biochemical pathway in mouse regulatory T cells that enhances their function, stability and survival. When scientists eliminated Nrp1 on just regulatory T cells, those cells were unable to respond to signals that normally bolstered their anti-inflammatory activity.

When investigators analyzed human regulatory T cells, they found evidence that the pathway may also serve the same role.

In addition, more than 16 months after losing Nrp1 activity in their regulatory T cells, the mice showed no signs of autoimmune or inflammatory complications. “That is significant because mice and humans that lack or have substantial defects in regulatory T cells develop lethal autoimmune disease,” Vignali said.

Knocking out or blocking the activity of Nrp1 on regulatory T cells in mouse models of several human cancers, including the deadly skin cancer melanoma, led to reduced, delayed or complete elimination of the tumors. Blocking Sema4a had a similar anti-tumor effect, researchers reported. “The impact was particularly dramatic in a mouse model of human melanoma,” Vignali said. “Mice lacking Nrp1 on regulatory T cells were almost completely resistant to developing melanoma, but did not develop any autoimmune or inflammatory complications.”

Although investigators have not yet identified which cells carry Sema4a in tumors and boost regulatory T cell function, the scientists did report that immune cells called plasmacytoid dendritic cells (pDCs) provided more than half of the Sema4a in tumors in this study. That was surprising because pDCs make up a very small percentage of immune cells, and there is a long history of suppressive interactions between regulatory T cells and pDCs in tumors, Vignali said. Both cell types are recognized as inducing the immune system to tolerate, rather than attack, tumors.

Researchers also provided new details of how the Nrp1 pathway functions, including evidence that along with bolstering the ability of regulatory T cells to suppress the immune response, the pathway also helps maintain a stable population of regulatory T cells. “This pathway does not just boost regulatory function. It may define how regulatory T cells maintain their identity,” said Greg Delgoffe, Ph.D., a postdoctoral fellow in Vignali’s laboratory. Delgoffe and Seng-Ryong Woo, Ph.D., a former postdoctoral fellow in Vignali’s laboratory, are co-first authors.

The other authors are Meghan Turnis, Cliff Guy, Abigail Overacre, Matthew Bettini, Peter Vogel, David Finkelstein and Creg Workman, all of St. Jude; David Gravano, formerly of St. Jude; and Jody Bonnevier, R&D Systems, Inc., Minneapolis.

The study was funded in part by grants (AI091977, AI039480 and AI098383) from the National Institutes of Health; a grant (CA21765) from the National Cancer Center at NIH; and ALSAC.

St. Jude Media Relations Contacts
Summer Freeman
(desk) (901) 595-3061
(cell) (901) 297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) (901) 595-2295
(cell) (901) 297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>