Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three leading European Comprehensive Cancer Centres launch an international cooperation at top level

27.08.2008
Three European cancer centres in Paris (Institut Gustave Roussy), Amsterdam (Netherlands Cancer Institute) and in Stockholm (Karolinska Institutet), have joined forces in their battle against cancer.

In a collaborative effort, the European Comprehensive Cancer Centre Alliance (ECCCA) strives to develop and implement innovative strategies to improve cancer cure and reduce treatment related side effects.

With a strong focus on combining rationally designed targeted agents with radiotherapy, ECCCA brings together powerful technological platforms of genomics, proteomics and preclinical evaluation tools to identify promising agents for combined application in early clinical trials.

On September 5th this cooperation will start with an inauguration symposium, organised at the NKI, where ECCCA will present its strategic plan, technical platforms and will announce the first three clinical translational trials that will be activated in the three participating centres.

Innovative trials

The cooperation will start immediately with a number of innovative trials. Each institute has submitted a trial that will be executed in all three institutes. In the trials, findings from the lab are “directly” brought into the clinic for evaluating their clinical efficacy. The combined knowledge and facilities in the field of fundamental, translational and clinical research means that it is possible to make rapid progress in this respect. All three trials are characterized by the combination of innovative radiation techniques with translational research.

Image guided Radiotherapy

The trial of the NKI-AVL is aimed at a new concept in breast-conserving treatment. During this treatment only the tumour, rather than the whole breast, is irradiated. A short irradiation schedule will be applied, while using image-guided techniques with a CT scan on the linear accelerator (Image Guided Accelerated Partial Breast Irradiation). The tumour response to treatment will be measured with PET and MRI spectrometry. Simultaneously, genetic analysis is done on the tumour tissue, whereby the response to the treatment is scored. It is anticipated that by looking at the response, it can be predicted which patients are suitable for this limited short treatment. The genetic changes during the radiation will also indicate which drugs may enhance the cell-killing effect of radiation.

Stereotactic Body radiotherapy (SBRT) in advanced lung cancer as an adjunctive to pharmaceutical treatment

With SBRT, tumours can be irradiated with high precision, sparing damage to surrounding healthy tissue. This technology was pioneered at Karolinska and is now being tested for various tumour indications. In this study, initiated by Karolinska, SBRT will be given to both primary tumours and metastatic locations, followed by conventional chemotherapy. The goal is to control tumours in locations that can be identified by novel imaging techniques (PET/CT). After SBRT the tumour disease will return to a less advanced stage, for which chemotherapy will be more effective. The goal of the treatment is to substantially prolong the patient’s survival and also to counteract tumour related symptoms.

Inhibition of the PI3-kinase/AKT/mTOR axis during Radiotherapy

Of the molecular anomalies identified in non-small cell lung cancer, EGFr mutation or overexpression, mutations of the RAS oncogene or the PTEN tumour suppressor gene are among the most frequently observed. All of these alterations signal through the PI3-kinase/AKT/mTOR pathway, which is critical for tumour escape from radiation induced cell death.

This trial initiated by IGR, aims at combining radiotherapy for locally advanced non small cell cancer (non metastatic,) sequential radio-chemotherapy and everolimus, an inhibitor of mTOR (RAD001). The first objective is to assess the safety of the combination. In parallel, prospective functional and metabolic imaging will be used (angio scanner and PET) to monitor tumour response. Tumour tissue will also be prospectively collected to define molecular patterns of responding tumours.

Ramona Pauwels | alfa
Further information:
http://www.nki.nl

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>