Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron-moving Malfunction May Underlie Neurodegenerative Diseases, Aging

24.09.2008
A glitch in the ability to move iron around in cells may underlie a disease known as Type IV mucolipidosis (ML4) and the suite of symptoms---mental retardation, poor vision and diminished motor abilities---that accompany it, new research at the University of Michigan shows.

The same deficit also may be involved in aging and neurodegenerative diseases such as Alzheimer's and Parkinson's, says lead author Haoxing Xu, an assistant professor of molecular, cellular and developmental biology.

The findings are scheduled to be published online Sept. 14 in the journal Nature.

An interest in iron transport led Xu to investigate ML4, another symptom of which is iron-deficiency anemia. Perhaps, he and his collaborators reasoned, impaired iron transport could explain both the anemia and the other problems that go hand-in-hand with ML4, a genetic disorder that mainly affects Jews of Eastern European background. Children with ML4 begin showing signs of developmental delay and eye problems during the first year of life and typically fail to progress beyond the level of a 15-month-old. Although the disease is rare, recent discovery of some children with milder forms of the condition raises the possibility of additional mild, undiagnosed cases.

To explore the possible role of iron transport in the disease, Xu's group focused on a protein called TRPML1. A mutation in the gene that produces TRPML1 is known to cause ML4, so the protein seemed like a logical starting point for investigating mechanisms responsible for the disease, even though TRPML1 had never been shown to be involved in iron transport. The only protein with that distinction was DMT1, which facilitates iron uptake in the gut and in cells that will become red blood cells, but not in most other cell types.

"Essentially all cells, including nerve cells and muscle cells, need iron," Xu said. "We wondered what happens in those cells where DMT1 isn't found, and we thought there must be an unidentified iron transporter protein, possibly TRPML1."

Unfortunately, TRPML1 isn't the easiest protein to study. Instead of residing in the cell's easily-accessed outer membrane, where many other proteins nestle, it hides in a tiny, interior pocket called lysosome. To probe the protein, Xu's group had to modify a technique known as the patch clamp, in which a micropipette and electrodes are attached to a cell membrane to record the activity of individual or multiple proteins that serve as channels for charged particles (ions) moving in and out of cells. With their modification, which they call the lysosome patch clamp, Xu's group was able to record TRPML1 activity in the tiny lysosome.

They found that TRPML1 was indeed capable of ferrying iron out of the lysosome. But was there any evidence that interfering with that ability might result in ML4 symptoms? To address that question, Xu's group studied defective TRPML1 proteins bearing the same mutations as those found in ML4 patients. Mutations associated with severe symptoms were the least adept at shuttling iron, while those associated with milder symptoms were more proficient, although still not fully functional.

Further experiments confirmed that when TRPML1 is defective, iron becomes trapped in the lysosome. One result of the buildup is formation of a brownish waste material, lipofuscin, known as the "aging pigment." In skin cells, lipofuscin is the culprit responsible for the dreaded liver spots that appear with increasing age, but in nerve, muscle and other cells, its accumulation has more serious consequences.

"How lipofuscin causes problems in neurons and muscles is not clear, but it's believed that this is garbage that, in time, compromises the normal function of the lysosome," Xu said. "And we know the lysosome is important for all kinds of cell biology, particularly the recycling of intracellular components, so if it's damaged, the cell is going to suffer." Indeed, abnormal accumulation of lipofuscin is associated with a range of disorders including Alzheimer's disease, Parkinson's disease, and macular degeneration (a degenerative disease of the eye) and also contributes to the aging process.

"In a sense we can think of ML4 as really early onset of aging," Xu said.

Now that the connections among TRPML1, iron and lipofuscin are coming into focus, researchers have new avenues to explore for potential treatments, not only for ML4 but also for more common neurodegenerative conditions.

"If we can somehow manipulate the lysosome iron level, we probably can provide a treatment for the patient," Xu said. "We're not far enough along for those kinds of experiments yet, but now we know enough to work toward that goal."

Xu's coauthors on the Nature paper are postdoctoral fellows Xian-ping Dong and Xiping Cheng and undergraduate Eric Mills of U-M; Markus Delling of Children's Hospital Boston; Fudi Wang of the Chinese Academy of Sciences and Tino Kurz of the University of Linköping, Sweden. The researchers received funding from the U-M Department of Molecular, Cellular and Developmental Biology and Biological Science Scholar Program.

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu
http://www.ml4.org/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>