Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron-moving Malfunction May Underlie Neurodegenerative Diseases, Aging

24.09.2008
A glitch in the ability to move iron around in cells may underlie a disease known as Type IV mucolipidosis (ML4) and the suite of symptoms---mental retardation, poor vision and diminished motor abilities---that accompany it, new research at the University of Michigan shows.

The same deficit also may be involved in aging and neurodegenerative diseases such as Alzheimer's and Parkinson's, says lead author Haoxing Xu, an assistant professor of molecular, cellular and developmental biology.

The findings are scheduled to be published online Sept. 14 in the journal Nature.

An interest in iron transport led Xu to investigate ML4, another symptom of which is iron-deficiency anemia. Perhaps, he and his collaborators reasoned, impaired iron transport could explain both the anemia and the other problems that go hand-in-hand with ML4, a genetic disorder that mainly affects Jews of Eastern European background. Children with ML4 begin showing signs of developmental delay and eye problems during the first year of life and typically fail to progress beyond the level of a 15-month-old. Although the disease is rare, recent discovery of some children with milder forms of the condition raises the possibility of additional mild, undiagnosed cases.

To explore the possible role of iron transport in the disease, Xu's group focused on a protein called TRPML1. A mutation in the gene that produces TRPML1 is known to cause ML4, so the protein seemed like a logical starting point for investigating mechanisms responsible for the disease, even though TRPML1 had never been shown to be involved in iron transport. The only protein with that distinction was DMT1, which facilitates iron uptake in the gut and in cells that will become red blood cells, but not in most other cell types.

"Essentially all cells, including nerve cells and muscle cells, need iron," Xu said. "We wondered what happens in those cells where DMT1 isn't found, and we thought there must be an unidentified iron transporter protein, possibly TRPML1."

Unfortunately, TRPML1 isn't the easiest protein to study. Instead of residing in the cell's easily-accessed outer membrane, where many other proteins nestle, it hides in a tiny, interior pocket called lysosome. To probe the protein, Xu's group had to modify a technique known as the patch clamp, in which a micropipette and electrodes are attached to a cell membrane to record the activity of individual or multiple proteins that serve as channels for charged particles (ions) moving in and out of cells. With their modification, which they call the lysosome patch clamp, Xu's group was able to record TRPML1 activity in the tiny lysosome.

They found that TRPML1 was indeed capable of ferrying iron out of the lysosome. But was there any evidence that interfering with that ability might result in ML4 symptoms? To address that question, Xu's group studied defective TRPML1 proteins bearing the same mutations as those found in ML4 patients. Mutations associated with severe symptoms were the least adept at shuttling iron, while those associated with milder symptoms were more proficient, although still not fully functional.

Further experiments confirmed that when TRPML1 is defective, iron becomes trapped in the lysosome. One result of the buildup is formation of a brownish waste material, lipofuscin, known as the "aging pigment." In skin cells, lipofuscin is the culprit responsible for the dreaded liver spots that appear with increasing age, but in nerve, muscle and other cells, its accumulation has more serious consequences.

"How lipofuscin causes problems in neurons and muscles is not clear, but it's believed that this is garbage that, in time, compromises the normal function of the lysosome," Xu said. "And we know the lysosome is important for all kinds of cell biology, particularly the recycling of intracellular components, so if it's damaged, the cell is going to suffer." Indeed, abnormal accumulation of lipofuscin is associated with a range of disorders including Alzheimer's disease, Parkinson's disease, and macular degeneration (a degenerative disease of the eye) and also contributes to the aging process.

"In a sense we can think of ML4 as really early onset of aging," Xu said.

Now that the connections among TRPML1, iron and lipofuscin are coming into focus, researchers have new avenues to explore for potential treatments, not only for ML4 but also for more common neurodegenerative conditions.

"If we can somehow manipulate the lysosome iron level, we probably can provide a treatment for the patient," Xu said. "We're not far enough along for those kinds of experiments yet, but now we know enough to work toward that goal."

Xu's coauthors on the Nature paper are postdoctoral fellows Xian-ping Dong and Xiping Cheng and undergraduate Eric Mills of U-M; Markus Delling of Children's Hospital Boston; Fudi Wang of the Chinese Academy of Sciences and Tino Kurz of the University of Linköping, Sweden. The researchers received funding from the U-M Department of Molecular, Cellular and Developmental Biology and Biological Science Scholar Program.

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu
http://www.ml4.org/

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>