Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An important breakthrough in immunology by IRCM researchers

Dr. André Veillette’s team elucidates a molecular mechanism associated with an immune disorder
A team of researchers at the IRCM led by Dr. André Veillette made an important breakthrough in the field of immunology, which will be published online today by the scientific journal Immunity. The scientists explained a poorly understood molecular mechanism associated with a human immune disorder known as XLP disease or Duncan’s syndrome.

“We studied the SAP molecule, which plays a critical role in multiple different types of immune cells,” says Dr. Veillette, Director of the Molecular Oncology research unit at the IRCM. “More specifically, we wanted to understand why SAP is an essential component of natural killer cells’ ability to eliminate abnormal blood cells.”

Natural killer (NK) cells are crucial to the immune system, and provide rapid responses against cancer and virus-infected cells, especially blood cells as can be found in leukemia and lymphomas. Patients with XLP are at a high risk of developing lymphomas.

“Until now, the way by which SAP enhances NK cells’ response to abnormal blood cells was not well understood,” explains Zhongjun Dong, former researcher in Dr. Veillette’s laboratory and first author of the article. “We discovered that SAP stimulates the function of NK cells through a double mechanism. On one hand, it couples the necessary genes and enzymes to increase NK cell responses, and on the other hand, it prevents genes from inhibiting these responses.” Dr. Dong is now a professor at Tsinghua University, a leading university in China.

“The SAP molecule is important in immunity, as it is associated with most cases of XLP disease,” adds Dr. Veillette. “In addition, our findings may have implications on the role of SAP in other diseases such as lupus and arthritis.”

According to the XLP Research Trust, X-linked lymphoproliferative disease (XLP), also known as Duncan’s syndrome, is a fatal disease affecting boys worldwide. The cause of the condition was only found in 1998, so many cases may not yet have been properly diagnosed. If untreated, approximately 70% of patients with XLP die by the age of 10.

Dr. Veillette’s research is funded by the Canada Research Chairs program and the Canadian Institutes for Health Research (CIHR). “I applaud Dr. Veillette and his team for their research in the field of human immune disorder and their breakthrough discovery in understanding the role of the SAP protein in controlling abnormal blood cells," said Dr. Marc Ouellette, Scientific Director of the CIHR Institute of Infection and Immunity. "Their work will contribute to a better understanding of our immune system and how to treat human immune diseases for improved health for all Canadians.”

For more information on this discovery, please refer to the article summary published online by Immunity.

About Dr. André Veillette
André Veillette obtained his medical degree from the Université Laval. He is Full IRCM Research Professor and Director of the Molecular Oncology research unit. Dr. Veillette is a full researcher-professor in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal. He is also adjunct professor in the Department of Medicine (Division of Experimental Medicine) at McGill University. Dr. Veillette holds the Canada Research Chair in Immune System Signalling. For more information, visit

About the Institut de recherches cliniques de Montréal (IRCM)
Founded in 1967, the IRCM ( is currently comprised of 36 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

About the Canadian Institutes of Health Research (CIHR)
The Canadian Institutes of Health Research ( is the Government of Canada’s health research investment agency. CIHR’s mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

For more information and to schedule an interview with Dr. Veillette, please contact:

Julie Langelier
Communications Officer (IRCM)
(514) 987-5555

Lucette Thériault
Communications Director (IRCM)
(514) 987-5535

Julie Langelier | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>