Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important breakthrough in immunology by IRCM researchers

08.06.2012
Dr. André Veillette’s team elucidates a molecular mechanism associated with an immune disorder
A team of researchers at the IRCM led by Dr. André Veillette made an important breakthrough in the field of immunology, which will be published online today by the scientific journal Immunity. The scientists explained a poorly understood molecular mechanism associated with a human immune disorder known as XLP disease or Duncan’s syndrome.

“We studied the SAP molecule, which plays a critical role in multiple different types of immune cells,” says Dr. Veillette, Director of the Molecular Oncology research unit at the IRCM. “More specifically, we wanted to understand why SAP is an essential component of natural killer cells’ ability to eliminate abnormal blood cells.”

Natural killer (NK) cells are crucial to the immune system, and provide rapid responses against cancer and virus-infected cells, especially blood cells as can be found in leukemia and lymphomas. Patients with XLP are at a high risk of developing lymphomas.

“Until now, the way by which SAP enhances NK cells’ response to abnormal blood cells was not well understood,” explains Zhongjun Dong, former researcher in Dr. Veillette’s laboratory and first author of the article. “We discovered that SAP stimulates the function of NK cells through a double mechanism. On one hand, it couples the necessary genes and enzymes to increase NK cell responses, and on the other hand, it prevents genes from inhibiting these responses.” Dr. Dong is now a professor at Tsinghua University, a leading university in China.

“The SAP molecule is important in immunity, as it is associated with most cases of XLP disease,” adds Dr. Veillette. “In addition, our findings may have implications on the role of SAP in other diseases such as lupus and arthritis.”

According to the XLP Research Trust, X-linked lymphoproliferative disease (XLP), also known as Duncan’s syndrome, is a fatal disease affecting boys worldwide. The cause of the condition was only found in 1998, so many cases may not yet have been properly diagnosed. If untreated, approximately 70% of patients with XLP die by the age of 10.

Dr. Veillette’s research is funded by the Canada Research Chairs program and the Canadian Institutes for Health Research (CIHR). “I applaud Dr. Veillette and his team for their research in the field of human immune disorder and their breakthrough discovery in understanding the role of the SAP protein in controlling abnormal blood cells," said Dr. Marc Ouellette, Scientific Director of the CIHR Institute of Infection and Immunity. "Their work will contribute to a better understanding of our immune system and how to treat human immune diseases for improved health for all Canadians.”

For more information on this discovery, please refer to the article summary published online by Immunity.

About Dr. André Veillette
André Veillette obtained his medical degree from the Université Laval. He is Full IRCM Research Professor and Director of the Molecular Oncology research unit. Dr. Veillette is a full researcher-professor in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal. He is also adjunct professor in the Department of Medicine (Division of Experimental Medicine) at McGill University. Dr. Veillette holds the Canada Research Chair in Immune System Signalling. For more information, visit www.ircm.qc.ca/veillette.

About the Institut de recherches cliniques de Montréal (IRCM)
Founded in 1967, the IRCM (www.ircm.qc.ca) is currently comprised of 36 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

About the Canadian Institutes of Health Research (CIHR)
The Canadian Institutes of Health Research (www.cihr-irsc.gc.ca) is the Government of Canada’s health research investment agency. CIHR’s mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

For more information and to schedule an interview with Dr. Veillette, please contact:

Julie Langelier
Communications Officer (IRCM)
julie.langelier@ircm.qc.ca
(514) 987-5555

Lucette Thériault
Communications Director (IRCM)
lucette.theriault@ircm.qc.ca
(514) 987-5535

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>