Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea extract shows promise in leukemia trials

27.05.2009
Mayo Clinic researchers are reporting positive results in early leukemia clinical trials using the chemical epigallocatechin gallate (EGCG), an active ingredient in green tea.

The trial determined that patients with chronic lymphocytic leukemia (CLL) can tolerate the chemical fairly well when high doses are administered in capsule form and that lymphocyte count was reduced in one-third of participants. The findings appear today online in the Journal of Clinical Oncology.

"We found not only that patients tolerated the green tea extract at very high doses, but that many of them saw regression to some degree of their chronic lymphocytic leukemia," says Tait Shanafelt, M.D., Mayo Clinic hematologist and lead author of the study. "The majority of individuals who entered the study with enlarged lymph nodes saw a 50 percent or greater decline in their lymph node size."

CLL is the most common subtype of leukemia in the United States. Currently it has no cure. Blood tests have enabled early diagnosis in many instances; however, treatment consists of watchful waiting until the disease progresses. Statistics show that about half of patients with early stage diseases have an aggressive form of CLL that leads to early death. Researchers hope that EGCG can stabilize CLL for early stage patients or perhaps improve the effectiveness of treatment when combined with other therapies.

The research has moved to the second phase of clinical testing in a follow-up trial -- already fully enrolled -- involving roughly the same number of patients. All will receive the highest dose administered from the previous trial.

These clinical studies are the latest steps in a multiyear bench-to-bedside project that began with tests of the green tea extract on cancer cells in the laboratory of Mayo hematologist Neil Kay, M.D., a co-author on this article. After laboratory research showed dramatic effectiveness in killing leukemia cells, the findings were applied to studies on animal tissues and then on human cells in the lab. (See "Green Tea and Leukemia" in Discovery's Edge magazine.)

In the first clinical trial, 33 patients received variations of eight different oral doses of Polyphenon E, a proprietary compound whose primary active ingredient is EGCG. Doses ranged from 400 milligrams (mg) to 2,000 mg administered twice a day. Researchers determined that they had not reached a maximum tolerated dose, even at 2,000 mg twice per day.

VIDEO ALERT: Additional audio and video resources, including comments by Dr. Shanafelt describing the research, are available on the Mayo Clinic News Blog. These materials are also subject to embargo but may be accessed in advance by journalists for incorporation into stories. The password for this post is gteacll.

The study was sponsored by Mayo Clinic, the CLL Global Research Foundation, CLL Topics (including contributions by individual CLL patients) and the Commonwealth Foundation for Cancer Research. Medication for the study was provided by Polyphenon E International. Others on the research team were Timothy Call, M.D.; Clive Zent, M.D.; Betsy LaPlant; Deborah Bowen; Michelle Roos; Charla Secreto; Asish Ghosh, Ph.D.; Brian Kabat; Diane Jelinek, Ph.D.; and Charles Erlichman, M.D., all of Mayo Clinic; and Mao-Jung Lee, Ph.D., and Chung Yang, Ph.D., both of Rutgers University.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>