Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Green tea extract shows promise in leukemia trials

Mayo Clinic researchers are reporting positive results in early leukemia clinical trials using the chemical epigallocatechin gallate (EGCG), an active ingredient in green tea.

The trial determined that patients with chronic lymphocytic leukemia (CLL) can tolerate the chemical fairly well when high doses are administered in capsule form and that lymphocyte count was reduced in one-third of participants. The findings appear today online in the Journal of Clinical Oncology.

"We found not only that patients tolerated the green tea extract at very high doses, but that many of them saw regression to some degree of their chronic lymphocytic leukemia," says Tait Shanafelt, M.D., Mayo Clinic hematologist and lead author of the study. "The majority of individuals who entered the study with enlarged lymph nodes saw a 50 percent or greater decline in their lymph node size."

CLL is the most common subtype of leukemia in the United States. Currently it has no cure. Blood tests have enabled early diagnosis in many instances; however, treatment consists of watchful waiting until the disease progresses. Statistics show that about half of patients with early stage diseases have an aggressive form of CLL that leads to early death. Researchers hope that EGCG can stabilize CLL for early stage patients or perhaps improve the effectiveness of treatment when combined with other therapies.

The research has moved to the second phase of clinical testing in a follow-up trial -- already fully enrolled -- involving roughly the same number of patients. All will receive the highest dose administered from the previous trial.

These clinical studies are the latest steps in a multiyear bench-to-bedside project that began with tests of the green tea extract on cancer cells in the laboratory of Mayo hematologist Neil Kay, M.D., a co-author on this article. After laboratory research showed dramatic effectiveness in killing leukemia cells, the findings were applied to studies on animal tissues and then on human cells in the lab. (See "Green Tea and Leukemia" in Discovery's Edge magazine.)

In the first clinical trial, 33 patients received variations of eight different oral doses of Polyphenon E, a proprietary compound whose primary active ingredient is EGCG. Doses ranged from 400 milligrams (mg) to 2,000 mg administered twice a day. Researchers determined that they had not reached a maximum tolerated dose, even at 2,000 mg twice per day.

VIDEO ALERT: Additional audio and video resources, including comments by Dr. Shanafelt describing the research, are available on the Mayo Clinic News Blog. These materials are also subject to embargo but may be accessed in advance by journalists for incorporation into stories. The password for this post is gteacll.

The study was sponsored by Mayo Clinic, the CLL Global Research Foundation, CLL Topics (including contributions by individual CLL patients) and the Commonwealth Foundation for Cancer Research. Medication for the study was provided by Polyphenon E International. Others on the research team were Timothy Call, M.D.; Clive Zent, M.D.; Betsy LaPlant; Deborah Bowen; Michelle Roos; Charla Secreto; Asish Ghosh, Ph.D.; Brian Kabat; Diane Jelinek, Ph.D.; and Charles Erlichman, M.D., all of Mayo Clinic; and Mao-Jung Lee, Ph.D., and Chung Yang, Ph.D., both of Rutgers University.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to ( is available as a resource for your health stories.

Robert Nellis | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>