Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic cause of heart valve defects


Heart valve defects are a common cause of death in newborns. Scientists at the University of Bonn and the caesar research center have discovered "Creld1" is a key gene for the development of heart valves in mice.

The researchers were able to show that a similar Creld1 gene found in humans functions via the same signaling pathway as in the mouse. This discovery is an important step forward in the molecular understanding of the pathogenesis of heart valve defects. The findings have been published in the journal "Developmental Cell".

Atrioventricular septal defect (AVSD) is a congenital heart defect in which the heart valves and cardiac septum are malformed. Children with Down's syndrome are particularly affected. Without surgical interventions, mortality in the first months of life is high.

"Even in adults, unidentified valve defects occur in about six percent of patients with heart disease," says Prof. Dr. Michael Hoch, Executive Director of the Life & Medical Sciences (LIMES) Institute of the University of Bonn.

... more about:
»Cell »Genetic »NFAT »cardiac »defect »defects »immune »organs »transplant »valves

For years, there have been indications that changes in the so-called Creld1 gene (Cysteine-Rich with EGF-Like Domains 1) increase the pathogenic risk of AVSD. However, the exact molecular connection between the gene and the disease was previously unknown. A research team from the LIMES Institute and the caesar research center in Bonn has now shown, in a mouse model, that Creld1 plays a crucial role in heart development. Researchers at the University of Bonn switched off the Creld1 gene in mice:

"We discovered that the precursor cells of the heart valves and the cardiac septum could no longer develop correctly," reports Dr. Elvira Mass from the LIMES Institute. This was an important indication that Creld1 is required at a very early stage for the development of the heart.

In embryonic development, the heart develops as the first organ

"In the embryonic stage, the heart develops as the very first organ. It pumps blood through the vascular system and is essential for supplying other organs of the body with oxygen and nutrients," reports the cooperation partner, Dr. Dagmar Wachten who directs the Minerva research group "Molecular Physiology" at the caesar research center and is engaged in research involving cardiac development. The research team discovered that the Creld1 gene controls the development of heart valves via the so-called calcineurin NFAT signaling pathway. The heart valve defects in mice lacking the Creld1 gene ultimately led to insufficient oxygen supply to the body, causing the mouse embryo to cease development after approximately eleven days.

Potential starting point for improving diagnostic measures

The research team anticipates that the findings can be carried over to patients. With regard to cardiac development, mice and humans are very similar and the Creld1 gene and the calcineurin/NFAT signaling pathway likewise function analogously in both species. "Our results contribute to a better understanding of the molecular basis of heart development and, in the medium-term, to improved diagnosis of unidentified heart valve diseases," explains Prof. Hoch. Interestingly, the calcineurin/NFAT signaling pathway is not only active in the heart but also in immune cells. In transplant medicine, it has to be suppressed over the long-term by drugs such as cyclosporine A so that transplanted organs are not rejected. "Within the scope of the ImmunoSensation Excellence Cluster, we are currently investigating the mechanism of action of Creld1 in immune cells," says Prof. Hoch, who is convinced that it will also be of importance in transplant medicine in the future.

Publication: Murine Creld1 controls cardiac development through activation of calcineurin/NFATc1 signaling, Developmental Cell, DOI: 10.1016/j.devcel.2014.02.012

Contact information:

Prof. Dr. Michael Hoch
Life & Medical Sciences (LIMES) Institute
of the University of Bonn
Tel. ++49-(0)228-7362737

Dr. Elvira Mass
Life & Medical Sciences (LIMES) Institute
of the University of Bonn
Tel. ++49-(0)228-7362767

Dr. Dagmar Wachten
caesar research center, Bonn
Minerva research group leader
Tel. ++49-(0)228-9656311

Weitere Informationen:

Johannes Seiler | idw - Informationsdienst Wissenschaft

Further reports about: Cell Genetic NFAT cardiac defect defects immune organs transplant valves

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>