Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reveals unexpected immunity to dystrophin in patients with Duchenne muscular dystrophy

07.10.2010
Natural immunity to dystrophin may contribute to muscle disease and complicate experimental therapies

An immune reaction to dystrophin, the muscle protein that is defective in patients with Duchenne muscular dystrophy, may pose a new challenge to strengthening muscles of patients with this disease, suggests a new study appearing in the October 7, 2010, issue of The New England Journal of Medicine.

Duchenne muscular dystrophy (DMD) is a hereditary and lethal neuromuscular disease characterized by progressive loss of muscle strength and integrity. Genetic information important for production of a functional dystrophin protein is deleted from the DMD gene of many patients. Studies by investigators at Nationwide Children's Hospital have examined the possibility of improving muscle strength by using modified viruses to deliver a corrected copy of the DMD gene to patients' muscles.

"DMD genes packaged into viral vectors strengthen muscles in mouse models of muscular dystrophy," said Jerry R. Mendell, MD, director, Center for Gene Therapy at The Research Institute at Nationwide Children's Hospital and one of the study authors. "In this study we attempted to translate basic research from the animal model to patients with DMD." Six boys with DMD gene deletions were treated by injecting a viral vector containing a corrected DMD gene into the biceps muscle of one arm. However, when the patients were evaluated three months later, long-term production of dystrophin protein from the corrected DMD gene was not detected.

"With one safety trial involving six patients, Drs. Mendell and Walker have provided a tremendous service to scientists advancing gene therapy research - particularly for muscular dystrophy," said Louis M. Kunkel, Ph.D., chairman of the MDA Scientific Advisory Committee. "By uncovering a somewhat surprising T cell immune response to dystrophin, they're helping investigators refine several distinct and promising approaches to treating Duchenne muscular dystrophy (DMD) by correcting or adding the dystrophin protein that is defective in the disease."

To understand why this therapy failed, the researchers measured immune responses against dystrophin. "We were concerned about immunity caused by a certain type of white blood cell called the T lymphocyte. The natural role of T cells is to protect us from infection and cancer by destroying cells that are recognized as different or foreign," said Christopher M. Walker, PhD, director, Center for Vaccines and Immunity at The Research Institute and one of the study authors. "Parts of the corrected dystrophin protein are clearly foreign because of the patient's DMD gene deletion, and so unwanted T cell immunity targeting the repaired muscle cells was a possibility."

The researchers did detect T cell immunity was against foreign segments of the corrected dystrophin protein in one patient with a large DMD gene deletion. However, stronger and faster T cell immunity was detected in a second patient with a much smaller DMD gene deletion.

"Strong, rapid immunity in the second patient with a very small DMD gene deletion was a surprise," said Dr. Walker. "The amount of corrected dystrophin protein that is foreign should also be small, and possibly ignored altogether by the T cells."

The mystery deepened further when T cell immunity to dystrophin was found to have been present in this patient even before treatment. Careful examination of the muscle revealed that the T cells present before gene therapy recognized dystrophin that is produced in a very small percentage of muscle cells that naturally self-correct the defective DMD gene. Delivery of the gene therapy vector to biceps muscle boosted and accelerated this pre-existing immune response.

"This study is significant because it documents immunity against a dystrophin protein designed to treat the disease. That may be broadly important to the entire field of gene therapy," said Dr. Mendell. "But it is even more important because of what it might mean for our basic understanding of muscle disease in DMD. We've known for a long time that T cells naturally invade muscles of DMD patients. Drugs that suppress immunity can prolong the time until they are confined to a wheel chair, but we never knew how or why this worked. This gene therapy study has lead to the new basic discovery that even small amounts of dystrophin naturally produced from self-correcting DMD genes can trigger destructive T cells, and they may target muscle cells in a process that resembles autoimmunity."

"The results from this small gene therapy trial underscore the importance of rigorous safety monitoring during all phases of clinical trials, but particularly at the early stages," said neurologist Valerie Cwik, MDA executive vice president for research and medical director. "The wealth of information about the immune system's reaction to gene therapy obtained from this study will aid in design of future clinical trials for DMD and, perhaps, other genetic neuromuscular diseases."

"Many of the on and off switches that regulate T cell immunity in humans are being identified," said Dr. Walker. "We are now attempting to manipulate these switches to enhance T cell immunity in patients with cancer and chronic viral infections. Once we understand the scope and significance of the T cell response against muscle in DMD, it may be possible to harness the same approaches to shut them off. This would move us closer to the goal of slowing muscle loss in DMD and ultimately to prevent immune responses against therapeutic dystrophin protein."

This research was made possible by support from the Muscular Dystrophy Association and Jesse's Journey, and the U.S. Department of Health and Human Services.

Erin Pope | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>