Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reveals unexpected immunity to dystrophin in patients with Duchenne muscular dystrophy

07.10.2010
Natural immunity to dystrophin may contribute to muscle disease and complicate experimental therapies

An immune reaction to dystrophin, the muscle protein that is defective in patients with Duchenne muscular dystrophy, may pose a new challenge to strengthening muscles of patients with this disease, suggests a new study appearing in the October 7, 2010, issue of The New England Journal of Medicine.

Duchenne muscular dystrophy (DMD) is a hereditary and lethal neuromuscular disease characterized by progressive loss of muscle strength and integrity. Genetic information important for production of a functional dystrophin protein is deleted from the DMD gene of many patients. Studies by investigators at Nationwide Children's Hospital have examined the possibility of improving muscle strength by using modified viruses to deliver a corrected copy of the DMD gene to patients' muscles.

"DMD genes packaged into viral vectors strengthen muscles in mouse models of muscular dystrophy," said Jerry R. Mendell, MD, director, Center for Gene Therapy at The Research Institute at Nationwide Children's Hospital and one of the study authors. "In this study we attempted to translate basic research from the animal model to patients with DMD." Six boys with DMD gene deletions were treated by injecting a viral vector containing a corrected DMD gene into the biceps muscle of one arm. However, when the patients were evaluated three months later, long-term production of dystrophin protein from the corrected DMD gene was not detected.

"With one safety trial involving six patients, Drs. Mendell and Walker have provided a tremendous service to scientists advancing gene therapy research - particularly for muscular dystrophy," said Louis M. Kunkel, Ph.D., chairman of the MDA Scientific Advisory Committee. "By uncovering a somewhat surprising T cell immune response to dystrophin, they're helping investigators refine several distinct and promising approaches to treating Duchenne muscular dystrophy (DMD) by correcting or adding the dystrophin protein that is defective in the disease."

To understand why this therapy failed, the researchers measured immune responses against dystrophin. "We were concerned about immunity caused by a certain type of white blood cell called the T lymphocyte. The natural role of T cells is to protect us from infection and cancer by destroying cells that are recognized as different or foreign," said Christopher M. Walker, PhD, director, Center for Vaccines and Immunity at The Research Institute and one of the study authors. "Parts of the corrected dystrophin protein are clearly foreign because of the patient's DMD gene deletion, and so unwanted T cell immunity targeting the repaired muscle cells was a possibility."

The researchers did detect T cell immunity was against foreign segments of the corrected dystrophin protein in one patient with a large DMD gene deletion. However, stronger and faster T cell immunity was detected in a second patient with a much smaller DMD gene deletion.

"Strong, rapid immunity in the second patient with a very small DMD gene deletion was a surprise," said Dr. Walker. "The amount of corrected dystrophin protein that is foreign should also be small, and possibly ignored altogether by the T cells."

The mystery deepened further when T cell immunity to dystrophin was found to have been present in this patient even before treatment. Careful examination of the muscle revealed that the T cells present before gene therapy recognized dystrophin that is produced in a very small percentage of muscle cells that naturally self-correct the defective DMD gene. Delivery of the gene therapy vector to biceps muscle boosted and accelerated this pre-existing immune response.

"This study is significant because it documents immunity against a dystrophin protein designed to treat the disease. That may be broadly important to the entire field of gene therapy," said Dr. Mendell. "But it is even more important because of what it might mean for our basic understanding of muscle disease in DMD. We've known for a long time that T cells naturally invade muscles of DMD patients. Drugs that suppress immunity can prolong the time until they are confined to a wheel chair, but we never knew how or why this worked. This gene therapy study has lead to the new basic discovery that even small amounts of dystrophin naturally produced from self-correcting DMD genes can trigger destructive T cells, and they may target muscle cells in a process that resembles autoimmunity."

"The results from this small gene therapy trial underscore the importance of rigorous safety monitoring during all phases of clinical trials, but particularly at the early stages," said neurologist Valerie Cwik, MDA executive vice president for research and medical director. "The wealth of information about the immune system's reaction to gene therapy obtained from this study will aid in design of future clinical trials for DMD and, perhaps, other genetic neuromuscular diseases."

"Many of the on and off switches that regulate T cell immunity in humans are being identified," said Dr. Walker. "We are now attempting to manipulate these switches to enhance T cell immunity in patients with cancer and chronic viral infections. Once we understand the scope and significance of the T cell response against muscle in DMD, it may be possible to harness the same approaches to shut them off. This would move us closer to the goal of slowing muscle loss in DMD and ultimately to prevent immune responses against therapeutic dystrophin protein."

This research was made possible by support from the Muscular Dystrophy Association and Jesse's Journey, and the U.S. Department of Health and Human Services.

Erin Pope | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>