Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen’s Effects on Fat Depends on Where It’s Located

30.07.2013
Article published in the American Journal of Physiology: Endocrinology and Metabolism

Women have long bemoaned the fact that they tend to store more fat than men, particularly after menopause. Although it’s well established that estrogen, the primary sex hormone present during women’s childbearing years, is responsible for this effect, exactly how estrogen exerts this influence has been unknown.

Previous research has shown that body fat both absorbs estrogen and other sex hormones circulating in the blood as well as produces its own sex hormones, though researchers have been unsure what role that plays in fat accumulation. Also not completely understood is why women tend to accumulate fat in the stereotypical “pear” shape, with more fat in the buttocks and thighs—a shape that’s thought to be healthier than men’s stereotypical “apple” shape, with more fat around the belly.

Gathering clues to answer these questions, Kathleen M. Gavin and her colleagues at East Carolina University examined how estrogen locally affects fat accumulation in these key areas by slowly infusing the hormone into the buttocks and belly in overweight women while also giving them drugs or having them exercise to speed up fat breakdown. They found that estrogen’s effects on these fat deposits was highly dependent on the deposits’ specific location and the fat-burning interventions themselves.

The article is entitled “Estradiol Effects on Subcutaneous Adipose Tissue Lipolysis in Premenopausal Women are Adipose Tissue Depot Specific and Treatment Dependent” (http://bit.ly/1aKKegY). It appears in the June edition of the American Journal of Physiology: Endocrinology and Metabolism, published by the American Physiological Society.

Methodology

Gavin and her colleagues recruited 17 overweight-to-obese premenopausal women, all between the ages of 18 and 44 years old. After an initial visit to the lab to gather a variety of information on each study participant, including weight, height, percent fat and lean mass, and VO2 max (a measure of physical fitness), the researchers subjected each participant to a variety of interventions meant to speed up lipolysis, or fat breakdown/mobilization. Through probes inserted directly in the fat of the participants’ buttocks and abdomen, the researchers slowly infused two drugs, either individually or together, that encourage lipolysis. They also had participants perform a bout of exercise at an intensity similar to a standard exercise session. Such “submaximal” exercise is known to optimally break down fat.

Participants performed this exercise both by itself and while the drugs were being infused. To test the effects of estrogen, the researchers also performed each of these conditions while estrogen was also being slowly infused into participants’ fat deposits. To measure fat breakdown, the researchers used a technique called microdialysis to look for a marker (glycerol) left behind when stored fat is broken down for eventual production of energy.

Results

The researchers found that estrogen’s effects differed tremendously depending on the fat- mobilizing interventions themselves and where the fat deposit was located. For example, estrogen blunted fat breakdown in the abdomen if it was infused while a particular fat-mobilization drug called isoproterenol was also being infused, but it didn’t have this effect in the buttocks. When a second fat mobilizing drug was given along with the first while participants were at rest, fat breakdown didn’t change any further. However, when both drugs were injected together during exercise or when the volunteers exercised without the drugs, fat breakdown increased in the abdomen, but less so in the buttocks.

Importance of the Findings

These results suggest that estrogen has different effects within fat tissue depending on its location. Together, these effects could help maintain premenopausal women’s “pear” shape even in the face of exercise or other signals the body receives to break down fat. They could also help generate some new ideas on how estrogen in fat may influence why postmenopausal women tend to accumulate more fat in the abdomen.

The authors suggest that more research is necessary to better understand the mechanisms behind how and why estrogen acts in these differential ways.

Study Team

In addition to Kathleen M. Gavin, the study team also includes Elizabeth E. Cooper, Dustin K. Raymer, and Robert C. Hickner, all of East Carolina University.

NOTE TO EDITORS: To schedule an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/1aKKegY.

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

Donna Krupa | Newswise
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>