Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen’s Effects on Fat Depends on Where It’s Located

30.07.2013
Article published in the American Journal of Physiology: Endocrinology and Metabolism

Women have long bemoaned the fact that they tend to store more fat than men, particularly after menopause. Although it’s well established that estrogen, the primary sex hormone present during women’s childbearing years, is responsible for this effect, exactly how estrogen exerts this influence has been unknown.

Previous research has shown that body fat both absorbs estrogen and other sex hormones circulating in the blood as well as produces its own sex hormones, though researchers have been unsure what role that plays in fat accumulation. Also not completely understood is why women tend to accumulate fat in the stereotypical “pear” shape, with more fat in the buttocks and thighs—a shape that’s thought to be healthier than men’s stereotypical “apple” shape, with more fat around the belly.

Gathering clues to answer these questions, Kathleen M. Gavin and her colleagues at East Carolina University examined how estrogen locally affects fat accumulation in these key areas by slowly infusing the hormone into the buttocks and belly in overweight women while also giving them drugs or having them exercise to speed up fat breakdown. They found that estrogen’s effects on these fat deposits was highly dependent on the deposits’ specific location and the fat-burning interventions themselves.

The article is entitled “Estradiol Effects on Subcutaneous Adipose Tissue Lipolysis in Premenopausal Women are Adipose Tissue Depot Specific and Treatment Dependent” (http://bit.ly/1aKKegY). It appears in the June edition of the American Journal of Physiology: Endocrinology and Metabolism, published by the American Physiological Society.

Methodology

Gavin and her colleagues recruited 17 overweight-to-obese premenopausal women, all between the ages of 18 and 44 years old. After an initial visit to the lab to gather a variety of information on each study participant, including weight, height, percent fat and lean mass, and VO2 max (a measure of physical fitness), the researchers subjected each participant to a variety of interventions meant to speed up lipolysis, or fat breakdown/mobilization. Through probes inserted directly in the fat of the participants’ buttocks and abdomen, the researchers slowly infused two drugs, either individually or together, that encourage lipolysis. They also had participants perform a bout of exercise at an intensity similar to a standard exercise session. Such “submaximal” exercise is known to optimally break down fat.

Participants performed this exercise both by itself and while the drugs were being infused. To test the effects of estrogen, the researchers also performed each of these conditions while estrogen was also being slowly infused into participants’ fat deposits. To measure fat breakdown, the researchers used a technique called microdialysis to look for a marker (glycerol) left behind when stored fat is broken down for eventual production of energy.

Results

The researchers found that estrogen’s effects differed tremendously depending on the fat- mobilizing interventions themselves and where the fat deposit was located. For example, estrogen blunted fat breakdown in the abdomen if it was infused while a particular fat-mobilization drug called isoproterenol was also being infused, but it didn’t have this effect in the buttocks. When a second fat mobilizing drug was given along with the first while participants were at rest, fat breakdown didn’t change any further. However, when both drugs were injected together during exercise or when the volunteers exercised without the drugs, fat breakdown increased in the abdomen, but less so in the buttocks.

Importance of the Findings

These results suggest that estrogen has different effects within fat tissue depending on its location. Together, these effects could help maintain premenopausal women’s “pear” shape even in the face of exercise or other signals the body receives to break down fat. They could also help generate some new ideas on how estrogen in fat may influence why postmenopausal women tend to accumulate more fat in the abdomen.

The authors suggest that more research is necessary to better understand the mechanisms behind how and why estrogen acts in these differential ways.

Study Team

In addition to Kathleen M. Gavin, the study team also includes Elizabeth E. Cooper, Dustin K. Raymer, and Robert C. Hickner, all of East Carolina University.

NOTE TO EDITORS: To schedule an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/1aKKegY.

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

Donna Krupa | Newswise
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>