Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward an early diagnostic tool for Alzheimer’s disease

30.08.2013
Patients with Alzheimer’s disease currently undergo neuropsychological testing to detect signs of the disease. The test results are difficult to interpret and are insufficient for making a definitive diagnosis.

But as scientists have already discovered, activity in certain areas of the cerebral cortex is affected even in the early stages of the disease. Professor Falk, who specialises in biological signal acquisition, examined this phenomenon and compared the electroencephalograms (EEGs) of healthy individuals (27), individuals with mild Alzheimer’s (27), and individuals with moderate cases of the disease (22). He found statistically significant differences across the three groups.


Despite all the research done on Alzheimer’s, there is still no early diagnostic tool for the disease. By looking at the brain wave components of individuals with the disease, Professor Tiago H. Falk of INRS’s Centre Énergie Matériaux Télécommunications has identified a promising avenue of research that may not only help diagnose the disease, but also assess its severity. This non-invasive, objective method is the subject of an article in the journal PLOS ONE.

In collaboration with neurologists and Francisco J. Fraga, an INRS visiting professor specializing in biological signals, Professor Falk used an algorithm that dissects brain waves of varying frequencies. “What makes this algorithm innovative is that it characterizes the changes in temporal dynamics of the patients’ brain waves,” explains Professor Falk.

“The findings show that healthy individuals have different patterns than those with mild Alzheimer’s disease. We also found a difference between patients with mild levels of the disease and those with moderate Alzheimer’s.”

To validate the model in order to eventually develop an early diagnostic tool for Alzheimer’s disease, Professor Falk’s team is sharing their algorithm on the NeuroAccelerator.org online data analysis portal. It is the first open source algorithm posted on the portal and may be used by researchers around the world to produce additional research findings.

Alzheimer’s disease accounts for 60% to 80% of all dementia cases in North America and is skyrocketing. This step toward the development of an early diagnostic tool that is non-invasive, objective, and relatively inexpensive is therefore welcome news for the research community.

About this publication

The article, entitled “Characterizing Alzheimer’s Disease Severity via Resting-Awake EEG Amplitude Modulation Analysis,” was published in the journal PLOS ONE on August 27, 2013. The work of Tiago H. Falk, a professor and researcher at INRS’s Centre Énergie Matériaux Télécommunications, and his coauthors was made possible by funding from the Natural Sciences and Engineering Research Council of Canada and the Foundation for Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo).

Stephanie Thibault | EurekAlert!
Further information:
http://www.inrs.ca

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>