Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug reduces brain changes, motor deficits associated with Huntington's disease

27.11.2013
Animal study supports disease therapies that mimic the action of growth-promoting proteins in brain

A drug that acts like a growth-promoting protein in the brain reduces degeneration and motor deficits associated with Huntington's disease in two mouse models of the disorder, according to a study appearing November 27 in the Journal of Neuroscience.

The findings add to a growing body of evidence that protecting or boosting neurotrophins — the molecules that support the survival and function of nerve cells — may slow the progression of Huntington's disease and other neurodegenerative disorders.

Huntington's disease is a brain disorder characterized by the emergence of decreased motor, cognitive, and psychiatric abilities, most commonly appearing in the mid-30s and 40s. The disease is caused by a genetic mutation that leads to abnormal clumps of protein in the brain, eventually resulting in the atrophy and death of nerve cells. While there are drugs to alleviate some symptoms of the disease, there are currently no therapies to delay the onset or slow its progression.

Previous studies of people with Huntington's disease point to a link between low levels of a neurotrophin called brain-derived neurotrophic factor (BDNF) and symptoms of the disorder. In the current study, Frank Longo, MD, PhD, and others at Stanford University, tested LM22A-4, a drug that specifically binds to and activates the BDNF receptor TrkB on nerve cells, in mice that model the disorder.

They found LM22A-4 reduces abnormal protein accumulation, delays nerve cell degeneration, and improves motor skills in the animals. The findings support other recent rodent studies that showed drugs that enhance the action of BDNF can reduce brain changes and symptoms of Huntington's disease.

"These results strongly suggest that drugs that act, in part, like BDNF could be effective therapeutics for treating Huntington's disease and other neurodegenerative conditions," Longo said.

How quickly the symptoms of Huntington's disease progress in people vary greatly. Longo's group examined the effects of LM22A-4 treatment in mice that were predisposed to develop symptoms of Huntington's disease rapidly (within weeks) or gradually (within months). LM22A-4 treatment reduced the accumulation of abnormal proteins in the striatum and cortex — brain regions affected in Huntington's disease. Motor behaviors (downward climbing and grip strength) also improved in the mice that received LM22A-4 treatments daily.

"The search for treatments that slow the progression of neurodegenerative diseases has gradually shifted from ameliorating symptoms to finding agents that reduce the progression of the disease," said Gary Lynch, PhD, who studies neurodegeneration at the University of California, Irvine, and was not involved with this study. "Given that this drug is clinically plausible, these results open up exciting possibilities for treating a devastating neurodegenerative disease," he added.

This research was funded by Taube Philanthropies, Koret Foundation, Jean Perkins Foundation, the National Institutes of Health, and the Veterans Administration.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of nearly 42,000 basic scientists and clinicians who study the brain and nervous system. Longo can be reached at longo@stanford.edu. More information on Huntington's disease and neurotrophins can be found on BrainFacts.org.

Kathleen Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>