Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug reduces brain changes, motor deficits associated with Huntington's disease

27.11.2013
Animal study supports disease therapies that mimic the action of growth-promoting proteins in brain

A drug that acts like a growth-promoting protein in the brain reduces degeneration and motor deficits associated with Huntington's disease in two mouse models of the disorder, according to a study appearing November 27 in the Journal of Neuroscience.

The findings add to a growing body of evidence that protecting or boosting neurotrophins — the molecules that support the survival and function of nerve cells — may slow the progression of Huntington's disease and other neurodegenerative disorders.

Huntington's disease is a brain disorder characterized by the emergence of decreased motor, cognitive, and psychiatric abilities, most commonly appearing in the mid-30s and 40s. The disease is caused by a genetic mutation that leads to abnormal clumps of protein in the brain, eventually resulting in the atrophy and death of nerve cells. While there are drugs to alleviate some symptoms of the disease, there are currently no therapies to delay the onset or slow its progression.

Previous studies of people with Huntington's disease point to a link between low levels of a neurotrophin called brain-derived neurotrophic factor (BDNF) and symptoms of the disorder. In the current study, Frank Longo, MD, PhD, and others at Stanford University, tested LM22A-4, a drug that specifically binds to and activates the BDNF receptor TrkB on nerve cells, in mice that model the disorder.

They found LM22A-4 reduces abnormal protein accumulation, delays nerve cell degeneration, and improves motor skills in the animals. The findings support other recent rodent studies that showed drugs that enhance the action of BDNF can reduce brain changes and symptoms of Huntington's disease.

"These results strongly suggest that drugs that act, in part, like BDNF could be effective therapeutics for treating Huntington's disease and other neurodegenerative conditions," Longo said.

How quickly the symptoms of Huntington's disease progress in people vary greatly. Longo's group examined the effects of LM22A-4 treatment in mice that were predisposed to develop symptoms of Huntington's disease rapidly (within weeks) or gradually (within months). LM22A-4 treatment reduced the accumulation of abnormal proteins in the striatum and cortex — brain regions affected in Huntington's disease. Motor behaviors (downward climbing and grip strength) also improved in the mice that received LM22A-4 treatments daily.

"The search for treatments that slow the progression of neurodegenerative diseases has gradually shifted from ameliorating symptoms to finding agents that reduce the progression of the disease," said Gary Lynch, PhD, who studies neurodegeneration at the University of California, Irvine, and was not involved with this study. "Given that this drug is clinically plausible, these results open up exciting possibilities for treating a devastating neurodegenerative disease," he added.

This research was funded by Taube Philanthropies, Koret Foundation, Jean Perkins Foundation, the National Institutes of Health, and the Veterans Administration.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of nearly 42,000 basic scientists and clinicians who study the brain and nervous system. Longo can be reached at longo@stanford.edu. More information on Huntington's disease and neurotrophins can be found on BrainFacts.org.

Kathleen Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>