Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drug reduces brain changes, motor deficits associated with Huntington's disease

Animal study supports disease therapies that mimic the action of growth-promoting proteins in brain

A drug that acts like a growth-promoting protein in the brain reduces degeneration and motor deficits associated with Huntington's disease in two mouse models of the disorder, according to a study appearing November 27 in the Journal of Neuroscience.

The findings add to a growing body of evidence that protecting or boosting neurotrophins — the molecules that support the survival and function of nerve cells — may slow the progression of Huntington's disease and other neurodegenerative disorders.

Huntington's disease is a brain disorder characterized by the emergence of decreased motor, cognitive, and psychiatric abilities, most commonly appearing in the mid-30s and 40s. The disease is caused by a genetic mutation that leads to abnormal clumps of protein in the brain, eventually resulting in the atrophy and death of nerve cells. While there are drugs to alleviate some symptoms of the disease, there are currently no therapies to delay the onset or slow its progression.

Previous studies of people with Huntington's disease point to a link between low levels of a neurotrophin called brain-derived neurotrophic factor (BDNF) and symptoms of the disorder. In the current study, Frank Longo, MD, PhD, and others at Stanford University, tested LM22A-4, a drug that specifically binds to and activates the BDNF receptor TrkB on nerve cells, in mice that model the disorder.

They found LM22A-4 reduces abnormal protein accumulation, delays nerve cell degeneration, and improves motor skills in the animals. The findings support other recent rodent studies that showed drugs that enhance the action of BDNF can reduce brain changes and symptoms of Huntington's disease.

"These results strongly suggest that drugs that act, in part, like BDNF could be effective therapeutics for treating Huntington's disease and other neurodegenerative conditions," Longo said.

How quickly the symptoms of Huntington's disease progress in people vary greatly. Longo's group examined the effects of LM22A-4 treatment in mice that were predisposed to develop symptoms of Huntington's disease rapidly (within weeks) or gradually (within months). LM22A-4 treatment reduced the accumulation of abnormal proteins in the striatum and cortex — brain regions affected in Huntington's disease. Motor behaviors (downward climbing and grip strength) also improved in the mice that received LM22A-4 treatments daily.

"The search for treatments that slow the progression of neurodegenerative diseases has gradually shifted from ameliorating symptoms to finding agents that reduce the progression of the disease," said Gary Lynch, PhD, who studies neurodegeneration at the University of California, Irvine, and was not involved with this study. "Given that this drug is clinically plausible, these results open up exciting possibilities for treating a devastating neurodegenerative disease," he added.

This research was funded by Taube Philanthropies, Koret Foundation, Jean Perkins Foundation, the National Institutes of Health, and the Veterans Administration.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of nearly 42,000 basic scientists and clinicians who study the brain and nervous system. Longo can be reached at More information on Huntington's disease and neurotrophins can be found on

Kathleen Snodgrass | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>