Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Donor aortic graft improves reconstruction after partial laryngectomy

Novel grafts reduces need for permanent tracheotomy, maintain voice and swallowing function

Massachusetts General Hospital (MGH) surgeons have developed a new technique for reconstructing the larynx after surgery for advanced cancer. In the May Annals of Otology, Rhinology and Laryngology, they describe how this approach – which uses cryopreserved aortas from deceased donors to replace removed larynx tissue – allowed patients to avoid a permanent tracheotomy and maintain voice and swallowing function with no need for immunosuppressive medications.

The pioneering surgery was a collaborative effort between Steven Zeitels, MD, director of the MGH Center for Laryngeal Surgery, and John Wain, MD, surgical director of the MGH Lung Transplantation Service.

"Without this new reconstructive technique, most of these patients would have required a total laryngectomy," says Zeitels, corresponding author of the report. "I don't believe anything like this has been achieved before – especially for larynx cancer reconstruction in patients whose tumors recurred after radiotherapy."

Although small laryngeal tumors can be successfully removed through minimally invasive laser surgery or treated with radiation, advanced tumors require more invasive procedures to remove the affected area, especially when chemotherapy and radiation have failed as initial treatment. In these situations, problems with the healing of tissues previously exposed to radiation and the lack of reliable reconstructive techniques have meant that a majority of patients having partial laryngectomy still needed a permanent tracheotomy – an opening through the neck and into the trachea – resulting in substantial voice and swallowing dysfunction. Since the quality of life would probably be better with removal of the entire larynx, patients and their surgeons often chose a total laryngectomy.

To address the reconstructive limitations of partial laryngectomy, Zeitels and Wain developed an approach using the body's largest blood vessel, the aorta, to reconstruct the larynx. The MGH surgeons first used a previously frozen aortic graft for reconstruction after partial laryngectomy for recurrent cancer in 2009. Over the next two years, they performed the procedure on 15 patients, 8 of whom had previously received radiation therapy. All of these procedures were performed in one operation, combining both the tumor removal and reconstruction at the same time, and no immunosuppressive medications were needed.

Of that initial group of patients, all were able to have their postoperative tracheotomy tubes removed and resume breathing normally. All resumed speaking without the need for assistive devices, although their vocal quality depended on how much tissue had been removed, and all but one recovered and maintained swallowing function. Two patients had recurrence of their advanced tumors that required subsequent total laryngectomy. No stents were needed to keep patients' airways open, unlike in pilot trials using similar aortic grafts to reconstruct the trachea, which have had limited success.

"The shape of the aorta, which approximates that of the removed laryngeal tissue, and its ability to serve as a surface for healing within the airway are unique characteristics of these grafts that other forms of reconstruction do not provide," says Wain.

Zeitels adds, "The success of this procedure is remarkable, since the aortic tissue has held up extremely well against the stresses of a non-sterile environment, exposure to refluxing stomach fluids and the mechanical forces of swallowing and coughing. Given the success in this extremely challenging surgical scenario, it's likely that there will be many other uses for cryopreserved vascular grafts as supportive structures and tissue patches for surgery in other parts of the body."

Zeitels is the Eugene B. Casey Professor of Laryngeal Surgery, and Wain is an assistant professor of Surgery at Harvard Medical School. The study was supported, in part, by grants from the Voice Health Institute, the V Foundation and the Eugene B. Casey Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Mike Morrison | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>