Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where does dizziness come from?

09.10.2013
Johns Hopkins researchers pinpoint a key area for 'upright perception' in the human brain

Johns Hopkins researchers say they have pinpointed a site in a highly developed area of the human brain that plays an important role in the subconscious recognition of which way is straight up and which way is down.

The finding, described online in the journal Cerebral Cortex, may help account for some causes of spatial disorientation and dizziness, and offer targets for treating the feelings of unsteadiness and "floating" people experience when the brain fails to properly integrate input from the body's senses.

Disabling dizziness can be a symptom of damage to the inner ear or other senses such as vision. But in many cases, the problem instead appears to stem from a disruption of the processes in the brain that translate input coming from the inner ears about the pull of gravity and the eyes about our visual sensations into what is known as upright perception. The human brain has an automatic capacity to know which way is up even when our heads and bodies are askew. Studies of people in zero-gravity conditions suggest that sensing gravity plays a role in the perception of upright and spatial orientation.

"Our brain has this amazing way of knowing where we are in space, whether we are upright or tilted at an angle, even if it is completely dark and we can't see anything around us," says Amir Kheradmand, M.D., a neurology instructor at the Johns Hopkins University School of Medicine who conducted the research. "This study suggests there's a small area of neural tissue in the parietal cortex substantially involved in this ability, giving us a place to start thinking about how we may be able to treat people with disorienting dizziness."

Kheradmand says he and his team focused their attention on the right parietal cortex because studies in stroke victims with balance problems suggested that damage to that part of the brain was centrally involved in upright perception.

Recruiting eight healthy subjects for the study, the Johns Hopkins team placed each person individually in a dark room and showed them lines illuminated on a screen. The researchers instructed the subjects to report the orientation of the lines by rotating a dial to the right, left or straight.

The subjects then received what is known as TMS (trans-cranial magnetic stimulation), which painlessly and noninvasively delivers electromagnetic currents to precise locations in the brain that can temporarily disrupt the function of the targeted area. TMS is considered safe and is approved by the U.S. Food and Drug Administration to treat some patients with depression by stimulating nerve cells in the region of the brain involved in mood control and depression.

For this part of the experiments, each subject had an electromagnetic coil placed against the scalp in a 2-centimeter wide location across the right parietal lobe, behind the ear. This spot was found initially by mapping a small cortical region of the parietal lobe in one subject. At the identified location, the subjects got 600 electromagnetic pulses over the course of 40 seconds. After each 40-second session, the subjects were again asked to show researchers which way each illuminated line on the screen was oriented. The results wore off quickly and the subjects could again be tested on another day. Ultimately, the researchers found that each subject reported that his or her sense of being upright was skewed in the same way after TMS in the same spot in the parietal cortex: the supramarginal gyrus.

Kheradmand says the study's results raise the possibility that TMS could potentially be used to treat chronic dizziness. "If we can disrupt upright perception in healthy people using TMS, it might also be possible to use TMS to fix dysfunction in the same location in people with dizziness and spatial disorientation," he says.

"It's fascinating that we've gotten to the point that we can show that a subconscious perception can be altered using this simple, noninvasive technique," he adds. "We're excited that this could someday be a key to helping people who have dizziness and spatial disorientation to feel better." David S. Zee, M.D., and Adrian Lasker, M.S., both of Johns Hopkins, also contributed to this research.

This work was supported by a training grant from the National Institutes of Health's National Institute on Deafness and Other Communication Disorders (2T32DC000023), and by the Leon Levy, Schwerin Family and Landenberger foundations.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report.

Media Contacts:
Stephanie Desmon
410-955-8665; sdesmon1@jhmi.edu
Helen Jones
410-502-9422; hjones49@jhmi.edu

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>