Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Daily rhythms in blood vessels may explain morning peak in heart attacks

11.11.2008
It's not just the stress of going to work. Daily rhythms in the activity of cells that line blood vessels may help explain why heart attacks and strokes occur most often in early morning hours, researchers from Emory University School of Medicine have found.

Endothelial cells serve as the interface between the blood and the arteries, controlling arterial tone and helping to prevent clots that lead to strokes and heart attacks, says Ibhar Al Mheid, MD, a postdoctoral cardiology researcher at Emory.

He is scheduled to present his results in a poster session Monday, Nov. 10 at the American Heart Association Scientific Sessions in New Orleans.

"One of the important ways the lining of our blood vessels is maintained is by progenitor cells that come from the bone marrow," Al Mheid says. "These are essentially stem cells that help replace endothelial cells at sites of injury and build new vessels at sites deprived of adequate blood supply. The aim of our research was to look at the circadian pattern of both endothelial function -- the ability of blood vessels to relax -- and the abundance of the progenitor cells."

Working with Arshed Quyyumi, MD, professor of medicine and director of the Emory Cardiovascular Research Group, and colleagues, Al Mheid examined a dozen healthy middle-aged subjects every four hours for 24 hours. They drew blood while the subjects were asleep at 4 a.m. Blood vessel relaxation is assessed by cuff occlusion, a standard technique in measuring blood pressure – and was not measured at 4 a.m.

The researchers measured the ability of subjects' blood vessels to relax, the abundance of endothelial progenitor cells (EPCs) and their ability to grow in culture. Both the ability of blood vessels to relax and EPCs' ability to grow peaked (roughly 40 percent more than the middle of the day) at midnight, while cell numbers peaked at 8 p.m.

"The lining of our vessels appears to function better at night than in the day. Endothelial function is particularly depressed in the early morning hours," Al Mheid says.

He hypothesizes that an innate circadian timer in the brain, which other scientists have shown to be influenced by light and dark and daily activities, drives the cyclical variations in EPCs and endothelial function.

About Emory Heart & Vascular Center

Emory Heart & Vascular Center doctors are committed to providing clinically excellent cardiovascular patient care, pioneering innovative clinical research and training the best heart specialists in the world. A component of Emory Healthcare, the Center is consistently recognized by U.S. News & World Report as one of the top heart centers in the country.

Jennifer Johnson | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: Heart blood vessel endothelial cells heart attacks vascular cells

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>