Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children with chronic respiratory illness are vulnerable to critical H1N1

12.03.2010
Pediatric ICU capacity can be managed to meet the demands of a flu pandemic

As critical care professionals develop a better understanding of the progression of H1N1, they are becoming better prepared to treat children with severe cases, according to a new study that will be published in the March issue of Pediatric Critical Care Medicine (PCCM).

Additionally, with careful management, the pediatric critical care system is expected to be able to meet the increased demands of a flu pandemic, according to a resource modeling study published in the same issue of PCCM. Both studies are available on www.pccmjournal.org.

The first H1N1 study focusing exclusively on critically ill children found that children with chronic illness, especially respiratory illness, are more likely to develop H1N1 influenza that requires critical care and that the virus is likely to change course as it attacks the lungs throughout the course of the illness.

"The good news is that all of our patients survived, even though some needed mechanical ventilators and heart medication," said senior author David G. Nichols, MD, professor of anesthesiology/critical care medicine and pediatrics at the Johns Hopkins University School of Medicine.

Compared to seasonal influenza, H1N1 influenza appears to have increased infection rates among children and young adults and varies in severity.

The researchers reviewed cases of 13 critically ill children with H1N1 admitted to the Johns Hopkins Hospital Children's Center pediatric intensive care unit during the spring and summer of 2009. They found that the vast majority (92%) of the children had an underlying chronic disease, usually a lung disease such as asthma, before contracting H1N1 infection.

"Critical H1N1 disease in children has different and rapidly changing manifestations in the patients' lungs," explained Dr. Nichols. "Some children behaved as though they were having an asthma attack, while other children behaved as though they had severe pneumonia. Some children had both or switched from one to the other. These variable and changing manifestations of lung infection made life support with a mechanical ventilator challenging and required us to constantly reassess and readjust treatments."

The researchers also found that children with H1N1 lung disease are at increased risk for developing a second type of pneumonia.

Patients who received treatment with antiviral drugs such as Tamiflu within 48 hours of admission did not have significantly different outcomes than those who received antiviral treatment more than 48 hours following admission.

Study offers positive assessment of PICU surge capacity during pandemic flu

Even during the peak of a pandemic, adequate health care can be provided if patients are managed appropriately. "An influenza pandemic for children can be managed, even allowing emergency care for non-influenza-related acute care children, but only when firm decision-making rules for hospital health care are followed and anti-viral therapy is used to reduce the burden of the disease in the community," said lead author Raoul E. Nap, PhD, directorate of medical affairs, quality, and safety at the University Medical Center Groningen, University of Groningen in the Netherlands.

The researchers modeled pediatric surge capacity of health care facility and pediatric intensive care unit (PICU) requirements over time to assess the adequacy of preparedness planning for an influenza pandemic.

They noted a lack of published and detailed analyses of PICU needs and demands, raising concern that PICU facilities will be a major limiting factor in the provision of care. "We show that PICU surge capacity is likely to be adequate assuming that 'older children' [age > 7-8 years] can be rerouted to an adult ICU environment preserving adequate bed space for 'younger children', that enough adult ICU resources are available and that safe provision of care to children can be guaranteed," said Dr. Nap.

The study's overall assessment that an influenza pandemic can be managed at the level of health care institutions clearly contrasts with other sobering and daunting global analyses presented for ICU capacity, according to Dr. Nap.

"We recommend that an adaptable planning model for pediatric surge capacity be an integral part of a preparedness plan for a pandemic flu," Dr. Nap concluded.

"H1N1 has greatly impacted every pediatric critical care medicine program world-wide," said PCCM editor Patrick M. Kochanek, MD, FCCM. "I view the dissemination of new information on this disease as the top priority for our journal. The reports from both Baltimore and the Netherlands in the March issue of Pediatric Critical Care Medicine present, respectively, valuable information on the impact of critical respiratory disease produced by H1N1 in children with underlying chronic conditions, and explores PICU surge capacity."

Published by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, Pediatric Critical Care Medicine is the first peer-reviewed scientific journal to focus exclusively on pediatric and neonatal critical care medicine. The bimonthly journal's regular content includes clinical papers, scientific investigations, and solicited reviews. Selected abstracts from articles in each issue are published in Chinese, French, Italian, Japanese, Portuguese, and Spanish. Additionally, selected abstracts from relevant scientific meetings appear in the journal.

Sophie Tosta | EurekAlert!
Further information:
http://www.sccm.org

Further reports about: H1N1 H1N1 influenza ICU Medicine PCCM PICU Pediatric chronic condition influenza pandemic pandemic flu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>