Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer researchers discover how BRCA1 mutation starts breast, ovarian cancers

Scientists led by Drs. Mona Gauthier and Tak Mak at The Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre have solved a key piece in the puzzle of how BRCA1 gene mutations specifically predispose women to breast and ovarian cancers.

The answer, says Dr. Mak in research published today in the Journal of Experimental Medicine, is found in the way estrogen rushes in to "rescue" cells whose healthy functioning has been altered by oxidative stress, a well-established factor in cancer development.

Without estrogen, these damaged cells would die a natural death and not threaten the host in the long run, but with estrogen, these cells not only survive, but thrive and develop breast and ovarian cancers. In Canada, about 1,000 women die from BRCA1-related cancers every year.

The research published today illuminates the interplay between the tumour suppressor gene BRCA1 and a master regulator – Nrf2 – that governs the antioxidant response in cells. In healthy cells of all tissues, BRCA1 normally repairs damaged DNA in partnership with Nrf2, and so the cells are protected against oxidative stress. However, when the BRCA1 gene is mutated, it loses its ability to repair DNA and can no longer partner with Nrf2, shutting off its antioxidative function. In most tissues, the resulting oxidative stress kills the cells that have lost BRCA1 function.

However, in breast and ovary, the estrogen present in these tissues can swoop in to rescue BRCA1-deficient cells by triggering a partial turn-on of Nrf2. These unhealthy cells gain just enough resistance to oxidative stress to keep them alive and growing. Over time, these surviving BRCA1-deficient cells accumulate more and more mutations due to their lack of ability to repair DNA damage, eventually leading to the development of cancer in these tissues.

Dr. Mak likens the actions of Nrf2 to a ceiling sprinkler that puts out visible flames (oxidative stress) but doesn't reach the smoldering fire – cell damage – below.

He says: "Our research confirms that anti-estrogens can delay the onset of breast and ovarian cancers in carriers of BRCA1 mutations. Thus, the challenge is finding a way to block the antioxidant activity of estrogen without affecting its other activities that are necessary for female health. Modification of this one aspect of estrogen function would disrupt this significant cancer-initiating process while maintaining the positive effects of this hormone."

Dr. Gauthier and Dr. Mak discovered this critical interaction between BRCA1, Nrf2 and estrogen in initiating women's cancers by making use of genetically engineered mice. By examining the links between BRCA1 and oxidative stress in these mutant animals as well as in normal breast cells and breast tumours, they were able to generate results that finally explain why loss of a tumour suppressor gene normally active in all tissues leads only to breast and ovarian cancers. The missing piece of the puzzle was estrogen and its unexpected effects on the antioxidant regulation mediated by Nrf2.

Dr. Mak, Director of The Campbell Family Institute for Breast Cancer Research, is an internationally acclaimed immunologist renowned for his 1984 cloning of the genes encoding the human T cell receptor. He is also Professor, University of Toronto, in the Departments of Medical Biophysics and Immunology.

The research published today was funded by grants from the Canadian Institutes of Health Research, the Ontario Ministry of Health and Long-term Care, and The Princess Margaret Cancer Foundation.

About the Princess Margaret Cancer Centre, University Health Network

The Princess Margaret Cancer Centre and its research arm, the Ontario Cancer Institute – which includes The Campbell Family Cancer Research Institute – have achieved an international reputation as global leaders in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to or

Jane Finlayson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>