Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Signal Persists Even in Dreamless Sleep

02.10.2008
Neuroscientists at Washington University School of Medicine in St. Louis have taken one of the first direct looks at one of the human brain's most fundamental "foundations": a brain signal that never switches off and may support many cognitive functions.

The results, appearing online this week in The Proceedings of the National Academy of Sciences, are an important step forward for efforts to outline what neuroscientists call the functional architecture of the brain. Better understanding of this architecture will aid efforts to treat brain injury and mental disorders.

Although the brain's different specialized regions can be considered as a collection of physical structures, functional architecture instead focuses on metaphorical structures formed by brain processes and interactions among different brain regions. The "foundation" highlighted in the new study is a low-frequency signal created by neuronal activity throughout the brain. This signal doesn't switch off even in dreamless sleep, possibly to help maintain basic structure and facilitate offline housekeeping activities.

"A different, more labile and higher-frequency signal known as the gamma frequency activity has been the focus of much brain research in recent years," says first author Biyu He, a graduate student. "But we found that signal loses its large-scale structure in deep sleep, while the low-frequency signal does not, suggesting that the low-frequency signal may be more fundamental."

"What we've been finding is reorienting the way we think about how the brain works," says senior author Marcus Raichle, M.D., professor of radiology, of neurology and of neurobiology. "We're starting to see the brain as being in the prediction business, with ongoing, organized carrier frequencies within the systems of the brain that keep them prepared for the work they need to do to perform mental tasks."

Neurologists have already spent many years exploring the upper levels of the brain's functional architecture. In these studies, researchers typically ask volunteers to perform specific mental tasks as their brains are scanned using functional magnetic resonance imaging (fMRI). Such "goal-oriented" tasks might include looking for or studying a visual stimulus, moving an arm or leg, reading a word or listening for a sound. As the subjects perform these tasks, the scans reveal increases in blood flow to different parts of the brain, which researchers take as indications that the brain areas are contributing to the mental task.

In the past decade, though, scientists have realized that deeper structures underlie goal-oriented mental processes. These underlying brain processes continue to occur even when subjects aren't consciously using their brain to do anything, and the energies that the brain puts into them seem to be much greater than those used for goal-oriented tasks.

"The brain consumes a tremendous amount of the body's energy resources—it's only 2 percent of body weight, but it uses about 20 percent of the energy we take in," says Raichle. "When we started to ask where all those resources were being spent, we found that the goal-oriented tasks we had studied previously only accounted for a tiny portion of that energy budget. The rest appears to go into activities and processes that maintain a state of readiness in the brain."

To explore this deeper level of the brain's functional architecture, Raichle and others have been using fMRI to conduct detailed analyses of brain activity in subjects asked to do nothing. However, a nagging question has dogged those and other fMRI studies: Scientists assumed that increased blood flow to a part of the brain indicates that part has contributed to a mental task, but they wanted more direct evidence linking increased blood flow to stepped-up activity in brain cells.

In the new study, He and her colleagues took fMRI scans of five patients with intractable epilepsy at St. Louis Children's Hospital. The scans, during which the subjects did nothing, were taken prior to the temporary installation of grids of electrodes on the surfaces of the patients' brains. The level of detail provided by the grids is essential clinically for pinpointing the source of the seizures for possible surgical removal, a last resort employed only when other treatments failed.

Patients and their guardians gave permission to use the clinical data gathered from these electrodes for scientific research purposes. He's results confirmed that the fMRI data she had gathered earlier reflected changes in brain cell activity exhibited in the gamma frequency signal. But she also noticed the persistent low-frequency signal, which also corresponded to the fMRI data.

"When we looked back in the literature, we found that a similar signal had been the subject of a great deal of animal research using implanted electrodes in the 1960s through the 1980s," she says. "There were suggestions, for example, that when this low-frequency signal, which fluctuates persistently, is in a low trough, the brain may handle mental tasks more effectively."

"What we've shown provides a bridge between the fMRI work many scientists are doing now and the earlier work involving electrical recordings from the brain that emphasized slow activity," says He. "Bringing those two fields together may give us some very interesting insights into the brain’s organization and function."

He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proceedings of the National Academy of the Sciences, online edition.

Funding from the National Institutes of Health supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>