Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Approach to Treating Osteoarthritis Uses Engineered Proteins and Molecules to Halt Cartilage Degradation

30.04.2009
Researchers from Florida Atlantic University and the Kennedy Institute for Rheumatology in the UK are developing and evaluating a novel approach for osteoarthritis (OA) treatment by employing engineered proteins and other molecules that specifically block the enzymes responsible for degrading cartilage in OA. They have been able to unveil the mechanism of inhibitory proteins, and their recent studies suggest that highly selective inhibitors are essential for therapeutic development for the treatment of OA.

Florida Atlantic University researcher Dr. Keith Brew, Schmidt Senior Fellow and Distinguished Professor in the Charles E. Schmidt College of Biomedical Science, has received a five-year renewal grant for $2.6 million from the National Institutes of Health for a project aimed at developing and evaluating a novel approach for osteoarthritis (OA) treatment by employing engineered proteins and other molecules that specifically block the enzymes responsible for degrading cartilage in OA.

Brew’s collaborators on the project include Dr. Hideaki Nagase, a scientist at the Kennedy Institute for Rheumatology in London in the United Kingdom. Using rodent models of the disease and human tissues derived from joint replacement surgery, the researchers will investigate the mechanisms through which these enzymes act and assess their effectiveness.

OA is the most prevalent form of arthritis and afflicts approximately 21 million people in the United States over the age of 25. OA can affect any joint in the body, though it most commonly affects joints in the hands, hips, knees and spines. The hallmark of the disease is a breakdown and eventual loss of the cartilage in one or more joints. Cartilage is a type of connective tissue formed from proteins and other molecules that serves as a cushion between the bones of the joints.

The key enzymes involved in OA include metalloproteinases, a group of zinc-containing enzymes that can break down proteins, such as collagen, that are structural components of cartilage. Metalloproteinases are normally found in the spaces between cells in tissues and are important in many normal biological processes including embryo implantation and wound healing, as well as pathological processes such as inflammation and cancer. They are also involved in the breakdown and remodeling of tissues and organs, and production of regulatory proteins.

“There are currently no effective treatments for osteoarthritis except for joint replacement surgery,” said Brew. “Increasing our knowledge of the structures and molecular mechanisms of these key enzymes and finding ways to specifically inhibit these proteinases may provide new opportunities for the development of therapeutics and treatments to prevent the joint destruction seen in osteoarthritis.”

Brew and Nagase initially set out to investigate the structure and function of the tissue inhibitors of metalloproteinases (TIMPs), naturally occurring metalloproteinase inhibitory proteins. They were able to unveil the mechanism of inhibition thereby allowing them to engineer TIMPs to make them selectively inhibit specific metalloproteinases. Their recent studies with TIMPs suggest that highly selective inhibitors are essential for therapeutic development for the treatment of OA.

“The first step in the next phase of our research is to understand the molecular basis for selectivity in our TIMP-3 variants using biochemical, biophysical and structural methods, and to use this information to further develop highly discriminating inhibitors of metalloproteinases,” said Brew. The second part of their research will entail the evaluation of the efficacy of available and newly developed metalloproteinase inhibitors using in vitro and in vivo models of OA. They expect to validate target enzymes in human OA using these inhibitors and to further investigate which metalloproteinases are key targets for blocking the progression of OA in humans.

- FAU -

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>