Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Approach to Treating Osteoarthritis Uses Engineered Proteins and Molecules to Halt Cartilage Degradation

30.04.2009
Researchers from Florida Atlantic University and the Kennedy Institute for Rheumatology in the UK are developing and evaluating a novel approach for osteoarthritis (OA) treatment by employing engineered proteins and other molecules that specifically block the enzymes responsible for degrading cartilage in OA. They have been able to unveil the mechanism of inhibitory proteins, and their recent studies suggest that highly selective inhibitors are essential for therapeutic development for the treatment of OA.

Florida Atlantic University researcher Dr. Keith Brew, Schmidt Senior Fellow and Distinguished Professor in the Charles E. Schmidt College of Biomedical Science, has received a five-year renewal grant for $2.6 million from the National Institutes of Health for a project aimed at developing and evaluating a novel approach for osteoarthritis (OA) treatment by employing engineered proteins and other molecules that specifically block the enzymes responsible for degrading cartilage in OA.

Brew’s collaborators on the project include Dr. Hideaki Nagase, a scientist at the Kennedy Institute for Rheumatology in London in the United Kingdom. Using rodent models of the disease and human tissues derived from joint replacement surgery, the researchers will investigate the mechanisms through which these enzymes act and assess their effectiveness.

OA is the most prevalent form of arthritis and afflicts approximately 21 million people in the United States over the age of 25. OA can affect any joint in the body, though it most commonly affects joints in the hands, hips, knees and spines. The hallmark of the disease is a breakdown and eventual loss of the cartilage in one or more joints. Cartilage is a type of connective tissue formed from proteins and other molecules that serves as a cushion between the bones of the joints.

The key enzymes involved in OA include metalloproteinases, a group of zinc-containing enzymes that can break down proteins, such as collagen, that are structural components of cartilage. Metalloproteinases are normally found in the spaces between cells in tissues and are important in many normal biological processes including embryo implantation and wound healing, as well as pathological processes such as inflammation and cancer. They are also involved in the breakdown and remodeling of tissues and organs, and production of regulatory proteins.

“There are currently no effective treatments for osteoarthritis except for joint replacement surgery,” said Brew. “Increasing our knowledge of the structures and molecular mechanisms of these key enzymes and finding ways to specifically inhibit these proteinases may provide new opportunities for the development of therapeutics and treatments to prevent the joint destruction seen in osteoarthritis.”

Brew and Nagase initially set out to investigate the structure and function of the tissue inhibitors of metalloproteinases (TIMPs), naturally occurring metalloproteinase inhibitory proteins. They were able to unveil the mechanism of inhibition thereby allowing them to engineer TIMPs to make them selectively inhibit specific metalloproteinases. Their recent studies with TIMPs suggest that highly selective inhibitors are essential for therapeutic development for the treatment of OA.

“The first step in the next phase of our research is to understand the molecular basis for selectivity in our TIMP-3 variants using biochemical, biophysical and structural methods, and to use this information to further develop highly discriminating inhibitors of metalloproteinases,” said Brew. The second part of their research will entail the evaluation of the efficacy of available and newly developed metalloproteinase inhibitors using in vitro and in vivo models of OA. They expect to validate target enzymes in human OA using these inhibitors and to further investigate which metalloproteinases are key targets for blocking the progression of OA in humans.

- FAU -

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>