Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A better thought-controlled computer cursor

New algorithm greatly improves speed and accuracy

When a paralyzed person imagines moving a limb, cells in the part of the brain that controls movement still activate as if trying to make the immobile limb work again. Despite neurological injury or disease that has severed the pathway between brain and muscle, the region where the signals originate remains intact and functional.

In recent years, neuroscientists and neuroengineers working in prosthetics have begun to develop brain-implantable sensors that can measure signals from individual neurons, and after passing those signals through a mathematical decode algorithm, can use them to control computer cursors with thoughts. The work is part of a field known as neural prosthetics.

A team of Stanford researchers have now developed an algorithm, known as ReFIT, that vastly improves the speed and accuracy of neural prosthetics that control computer cursors. The results are to be published November 18 in the journal Nature Neuroscience in a paper by Krishna Shenoy, a professor of electrical engineering, bioengineering and neurobiology at Stanford, and a team led by research associate Dr. Vikash Gilja and bioengineering doctoral candidate Paul Nuyujukian.

In side-by-side demonstrations with rhesus monkeys, cursors controlled by the ReFIT algorithm doubled the performance of existing systems and approached performance of the real arm. Better yet, more than four years after implantation, the new system is still going strong, while previous systems have seen a steady decline in performance over time.

"These findings could lead to greatly improved prosthetic system performance and robustness in paralyzed people, which we are actively pursuing as part of the FDA Phase-I BrainGate2 clinical trial here at Stanford," said Shenoy.

Sensing mental movement in real time

The system relies on a silicon chip implanted into the brain, which records "action potentials" in neural activity from an array of electrode sensors and sends data to a computer. The frequency with which action potentials are generated provides the computer key information about the direction and speed of the user's intended movement.

The ReFIT algorithm that decodes these signals represents a departure from earlier models. In most neural prosthetics research, scientists have recorded brain activity while the subject moves or imagines moving an arm, analyzing the data after the fact. "Quite a bit of the work in neural prosthetics has focused on this sort of offline reconstruction," said Gilja, the first author of the paper.

The Stanford team wanted to understand how the system worked "online," under closed-loop control conditions in which the computer analyzes and implements visual feedback gathered in real time as the monkey neurally controls the cursor to toward an onscreen target.

The system is able to make adjustments on the fly when while guiding the cursor to a target, just as a hand and eye would work in tandem to move a mouse-cursor onto an icon on a computer desktop. If the cursor were straying too far to the left, for instance, the user likely adjusts their imagined movements to redirect the cursor to the right. The team designed the system to learn from the user's corrective movements, allowing the cursor to move more precisely than it could in earlier prosthetics.

To test the new system, the team gave monkeys the task of mentally directing a cursor to a target — an onscreen dot — and holding the cursor there for half a second. ReFIT performed vastly better than previous technology in terms of both speed and accuracy. The path of the cursor from the starting point to the target was straighter and it reached the target twice as quickly as earlier systems, achieving 75 to 85 percent of the speed of real arms.

"This paper reports very exciting innovations in closed-loop decoding for brain-machine interfaces. These innovations should lead to a significant boost in the control of neuroprosthetic devices and increase the clinical viability of this technology," said Jose Carmena, associate professor of electrical engineering and neuroscience at the University of California Berkeley.

A smarter algorithm
Critical to ReFIT's time-to-target improvement was its superior ability to stop the cursor. While the old model's cursor reached the target almost as fast as ReFIT, it often overshot the destination, requiring additional time and multiple passes to hold the target.

The key to this efficiency was in the step-by-step calculation that transforms electrical signals from the brain into movements of the cursor onscreen. The team had a unique way of "training" the algorithm about movement. When the monkey used his real arm to move the cursor, the computer used signals from the implant to match the arm movements with neural activity. Next, the monkey simply thought about moving the cursor, and the computer translated that neural activity into onscreen movement of the cursor. The team then used the monkey's brain activity to refine their algorithm, increasing its accuracy.

The team introduced a second innovation in the way ReFIT encodes information about the position and velocity of the cursor. Gilja said that previous algorithms could interpret neural signals about either the cursor's position or its velocity, but not both at once. ReFIT can do both, resulting in faster, cleaner movements of the cursor

An engineering eye

Early research in neural prosthetics had the goal of understanding the brain and its systems more thoroughly, Gilja said, but he and his team wanted to build on this approach by taking a more pragmatic engineering perspective. "The core engineering goal is to achieve highest possible performance and robustness for a potential clinical device, " he said.

To create such a responsive system, the team decided to abandon one of the traditional methods in neural prosthetics. Much of the existing research in this field has focused on differentiating among individual neurons in the brain. Importantly, such a detailed approach has allowed neuroscientists to create a detailed understanding of the individual neurons that control arm movement.

The individual neuron approach has its drawbacks, Gilja said. "From an engineering perspective, the process of isolating single neurons is difficult, due to minute physical movements between the electrode and nearby neurons, making it error-prone," he said. ReFIT focuses on small groups of neurons instead of single neurons.

By abandoning the single-neuron approach, the team also reaped a surprising benefit: performance longevity. Neural implant systems that are fine-tuned to specific neurons degrade over time. It is a common belief in the field that after six months to a year, they can no longer accurately interpret the brain's intended movement. Gilja said the Stanford system is working very well more than four years later.

"Despite great progress in brain-computer interfaces to control the movement of devices such as prosthetic limbs, we've been left so far with halting, jerky, Etch-a-Sketch-like movements. Dr. Shenoy's study is a big step toward clinically useful brain-machine technology that have faster, smoother, more natural movements," said James Gnadt, PhD, a program director in Systems and Cognitive Neuroscience at the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health.

For the time being, the team has been focused on improving cursor movement rather than the creation of robotic limbs, but that is not out of the question, Gilja said. Near term, precise, accurate control of a cursor is a simplified task with enormous value for paralyzed people.

"We think we have a good chance of giving them something very useful," he said. The team is now translating these innovations to paralyzed people as part of a clinical trial.

This research was funded by the Christopher and Dana Reeve Paralysis Foundation; NSF, NDSEG, and SGF Graduate Fellowships; DARPA ("Revolutionizing Prosthetics" and "REPAIR"); and NIH (NINDS-CRCNS and Director's Pioneer Award).

Other contributing researchers include Cynthia Chestek, John Cunningham, and Byron Yu, Joline Fan, Mark Churchland, Matthew Kaufman, Jonathan Kao, and Stephen Ryu.

Kelly Servick is a science-writing intern at the Stanford University School of Engineering.

Andrew Myers | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Antioxidants cause malignant melanoma to metastasize faster
09.10.2015 | University of Gothenburg

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>