Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there a relationship between sleep-wake rhythm and diabetes?

19.01.2009
A new gene variant influences fasting glucose levels via the melatonin metabolism

An international research team with German participation including Helmholtz Zentrum München, among other institutions, has succeeded in identifying a new gene variant which is associated with elevated fasting glucose levels and a high risk for type 2 diabetes.

The gene mediates insulin secretion indirectly via the release of melatonin, which implicates a previously unknown relationship between the sleep-wake rhythm and the fasting glucose level. The finding could open up new possibilities of treatment which go far beyond the primarily symptomatic therapy approaches to diabetes that have been practised until now.

Diabetes mellitus and diabetes-associated late complications are among the most frequent chronic diseases and causes of death worldwide. In Germany there are approximately six million people with type 2 diabetes who are aware that they have the disease. In addition, there is a relatively high estimated number of undiagnosed diabetics. Besides lifestyle factors such as overweight and lack of exercise, genetic factors play an important role in the pathogenesis of this disease.

The international MAGIC Consortium (MAGIC = Meta-Analyses of Glucose and Insulin-related traits Consortium) combined the data from 13 case-control studies with over 18,000 diabetic and 64,000 non-diabetic study participants and was able to identify a variant of the MTNR1B gene which is associated with both elevated fasting glucose levels as well an elevated risk for type 2 diabetes. The goal of the MAGIC Consortium is to identify gene variants which regulate the fasting glucose levels in healthy individuals.

The study results were published in the January issue of Nature Genetics.

Germany is represented within the framework of the KORA studies by scientists of the Helmholtz Zentrum München (Assistant Professor Thomas Illig; Director of the KORA studies: Professor H.-Erich Wichmann) and the German Diabetes Center in Düsseldorf (Dr. Wolfgang Rathmann, Dr. Christian Herder; Direktor: Professor Michael Roden).

The MTNR1B gene is expressed in insulin-producing islet cells, among other cells, and encodes one of the two known melatonin receptors. It is assumed that this receptor inhibits the release of insulin via the neural hormone melatonin. The melatonin level in the body is high at night and declines in daylight, whereas the insulin level is higher during the day than in the night. Taken together, these new data implicate an association between the sleep-wake rhythm, the so-called circadian rhythm, and fasting glucose levels, which was not known previously.

Until now an efficient strategy for prevention and for therapies to treat the cause of the disease has been missing in diabetes research. The Helmholtz Zentrum München is working intensively on new approaches in the study and treatment of diabetes. Further studies will show which role melatonin plays in the regulation of insulin secretion, fasting glucose levels and the development of diabetes and whether this finding will lead to new treatment options.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press-releases/press-releases-2009/press-releases-2009-detail/article/11503/44/index.html

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>