Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there a relationship between sleep-wake rhythm and diabetes?

19.01.2009
A new gene variant influences fasting glucose levels via the melatonin metabolism

An international research team with German participation including Helmholtz Zentrum München, among other institutions, has succeeded in identifying a new gene variant which is associated with elevated fasting glucose levels and a high risk for type 2 diabetes.

The gene mediates insulin secretion indirectly via the release of melatonin, which implicates a previously unknown relationship between the sleep-wake rhythm and the fasting glucose level. The finding could open up new possibilities of treatment which go far beyond the primarily symptomatic therapy approaches to diabetes that have been practised until now.

Diabetes mellitus and diabetes-associated late complications are among the most frequent chronic diseases and causes of death worldwide. In Germany there are approximately six million people with type 2 diabetes who are aware that they have the disease. In addition, there is a relatively high estimated number of undiagnosed diabetics. Besides lifestyle factors such as overweight and lack of exercise, genetic factors play an important role in the pathogenesis of this disease.

The international MAGIC Consortium (MAGIC = Meta-Analyses of Glucose and Insulin-related traits Consortium) combined the data from 13 case-control studies with over 18,000 diabetic and 64,000 non-diabetic study participants and was able to identify a variant of the MTNR1B gene which is associated with both elevated fasting glucose levels as well an elevated risk for type 2 diabetes. The goal of the MAGIC Consortium is to identify gene variants which regulate the fasting glucose levels in healthy individuals.

The study results were published in the January issue of Nature Genetics.

Germany is represented within the framework of the KORA studies by scientists of the Helmholtz Zentrum München (Assistant Professor Thomas Illig; Director of the KORA studies: Professor H.-Erich Wichmann) and the German Diabetes Center in Düsseldorf (Dr. Wolfgang Rathmann, Dr. Christian Herder; Direktor: Professor Michael Roden).

The MTNR1B gene is expressed in insulin-producing islet cells, among other cells, and encodes one of the two known melatonin receptors. It is assumed that this receptor inhibits the release of insulin via the neural hormone melatonin. The melatonin level in the body is high at night and declines in daylight, whereas the insulin level is higher during the day than in the night. Taken together, these new data implicate an association between the sleep-wake rhythm, the so-called circadian rhythm, and fasting glucose levels, which was not known previously.

Until now an efficient strategy for prevention and for therapies to treat the cause of the disease has been missing in diabetes research. The Helmholtz Zentrum München is working intensively on new approaches in the study and treatment of diabetes. Further studies will show which role melatonin plays in the regulation of insulin secretion, fasting glucose levels and the development of diabetes and whether this finding will lead to new treatment options.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press-releases/press-releases-2009/press-releases-2009-detail/article/11503/44/index.html

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>