Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor in eye could track pressure changes, monitor for glaucoma

17.06.2014

Your eye could someday house its own high-tech information center, tracking important changes and letting you know when it’s time to see an eye doctor.

University of Washington engineers have designed a low-power sensor that could be placed permanently in a person’s eye to track hard-to-measure changes in eye pressure. The sensor would be embedded with an artificial lens during cataract surgery and would detect pressure changes instantaneously, then transmit the data wirelessly using radio frequency waves.


U of Washington

An illustration of the final device. The device would be placed in an artificial lens with its antenna circling the perimeter, and the sensor and radio frequency chip inside.


Abbot Medical Optics and Optech

A commercially available artificial lens implanted in an eye. The UW’s device would one day be embedded into the part of the lens known as the capsular tension ring, which circles the perimeter.

The researchers recently published their results in the Journal of Micromechanics and Microengineering and filed patents on an initial prototype of the pressure-monitoring device.

“No one has ever put electronics inside the lens of the eye, so this is a little more radical,” said Karl Böhringer, a UW professor of electrical engineering and of bioengineering. “We have shown this is possible in principle. If you can fit this sensor device into an intraocular lens implant during cataract surgery, it won’t require any further surgery for patients.”

... more about:
»Sensor »activity »blindness »damage »diseases »glaucoma »pressure

The research team wanted to find an easy way to measure eye pressure for management of glaucoma, a group of diseases that damage the eye’s optic nerve and can cause blindness. Right now there are two ways to check eye pressure, but both require a visit to the ophthalmologist. At most, patients at risk for glaucoma may only get their pressure checked several times a year, said Tueng Shen, a collaborator and UW professor of ophthalmology.

But if ophthalmologists could insert a pressure monitoring system in the eye with an artificial lens during cataract surgery – now a common procedure performed on 3 million to 4 million people each year to remove blurry vision or glare caused by a hazy lens – that could save patients from a second surgery and essentially make their replacement lens “smarter” and more functional.

“The implementation of the monitoring device has to be well-suited clinically and must be designed to be simple and reliable,” Shen said. “We want every surgeon who does cataract surgeries to be able to use this.”

The UW engineering team, which includes Brian Otis, an associate professor of electrical engineering and also with Google Inc., and Cagdas Varel and Yi-Chun Shih, both former doctoral students in electrical engineering, built a prototype that uses radio frequency for wireless power and data transfer. A thin, circular antenna spans the perimeter of the device – roughly tracing a person’s iris – and harnesses enough energy from the surrounding field to power a small pressure sensor chip. The chip communicates with a close-by receiver about any shifts in frequency, which signify a change in pressure. Actual pressure is then calculated and those changes are tracked and recorded in real-time.

The chip’s processing mechanism is actually very simple, leaving the computational heavy lifting to the nearby receiver, which could be a handheld device or possibly built into a smartphone, Böhringer said.

The current prototype is larger than it would need to be to fit into an artificial lens, but the research team is confident it can be downscaled through more engineering. The team has successfully tested the sensing device embedded in the same flexible silicon material that’s used to create artificial lenses in cataract surgeries.

Similar to how a person’s blood pressure varies throughout the day with activity levels, eye pressure is thought to behave similarly, changing perhaps minute by minute. If the pressure in the eye is too high for the optic nerve to function, however, damage to the eye can begin, often with no pain or warning signs. This increased intraocular pressure is the main factor in glaucoma, which causes vision loss and ultimately blindness.

“Oftentimes damage to vision is noticed late in the game, and we can’t treat patients effectively by the time they are diagnosed with glaucoma,” Shen said. “Or, if medications are given, there’s no consistent way to check their effectiveness.”

As a result, many patients with the disease aren’t diagnosed early enough or aren’t on an accurate treatment plan, she added.

Both cataracts and glaucoma affect a similar aging population so it seems a natural pairing to place a pressure monitoring device in a new lens during cataract surgery, researchers said.

The team is working on downscaling the prototype to be tested in an actual artificial lens. Designing a final product that’s affordable for patients is the ultimate goal, researchers said.

“I think if the cost is reasonable and if the new device offers information that’s not measureable by current technology, patients and surgeons would be really eager to adopt it,” Shen said.

The research was funded by the Coulter Foundation and the UW. Buddy Ratner, a UW professor of bioengineering and of chemical engineering, and Felix Simonovsky, a UW bioengineering research scientist, also contributed to this work.

###

For more information, contact Böhringer at karl@ee.washington.edu or 206-221-5177 and Shen at ttshen@uw.edu or 206-616-8488.

Michelle Ma | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/06/16/sensor-in-eye-could-track-pressure-changes-monitor-for-glaucoma/

Further reports about: Sensor activity blindness damage diseases glaucoma pressure

More articles from Medical Engineering:

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

nachricht New microscope technique reveals internal structure of live embryos
08.08.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>