Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer’s disease; new approach, new possibilities?


Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) associated with the University of Antwerp have achieved a new breakthrough in their research on the origins of Alzheimer’s disease. Their alternative approach opens up new prospects for developing a treatment which can slow the disease’s progress. The researchers have shown that ´the plaques´ which form in the brain of patients are linked to damage to nearby blood vessels. Leakage appears to occur between the blood vessels and the brain, as a result of which the plaques develop and the disease manifests itself. This research is published today in the ‘American Journal of Pathology’.

Alzheimer’s disease

Alzheimer’s disease, a degenerative disease that gradually and progressively destroys brain cells, affects between 50% and 70% of all dementia patients and is therefore the major form of dementia. About 100,000 people suffer from this disease in Belgium. The damage caused to memory and mental functioning makes it one of today’s most frightening syndromes. In particular, the first realization of the loss of any sense of reality is extremely difficult to accept. So, science continues to search feverishly for ways to treat the disease.

The formation of plaques plays a key role

Alzheimer’s disease is characterized by an increasing deposit of the amyloid-ß protein in the brain. The accumulation of this protein results in ´plaques´; deposits which settle in the brain cells responsible for memory and observation. How the plaques develop is the key in the search for a treatment. Samir Kumar-Singh and his colleagues on a team headed by Christine Van Broeckhoven have unraveled how certain plaques are formed. In various mouse models, they demonstrate that the plaques attach primarily onto the blood vessels. The vessels show clear structural damage, so that the strictly-controlled separation between blood vessels and brain is compromised and leakage occurs.

A new model as a first step towards a treatment?

Under normal circumstances, the blood vessels transport the excess amyloid-ß protein away from the brain. However, the protein has a harmful effect on blood vessel walls. This effect is perhaps strengthened as a result of ageing, which causes the protein to be removed less efficiently. The blood vessel loses strength and in its immediate vicinity the accumulation of the amyloid-ß protein increases and plaques develop. Finally, the damage to the blood vessel is so great that it is no longer functional and other blood vessels take over its tasks.

The results of the research of Samir Kumar-Singh opens up alternatives for developing new treatments. For example, a treatment which promotes the removal of the amyloid-ß protein from the brain can significantly impede the onset of Alzheimer’s disease. A new approach which might have far-reaching consequences. Additional research should make it possible to verify this in greater detail.

Ann Van Gysel | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>