Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology could fix Achilles' heel

01.02.2008
Tissue engineered bone and skin grafts, synthetic heart valves, ceramic hip replacements… surgery is turning us into bionic people.

But the Achilles' heel in the prosthetic repertoire is fixing tendons… such as that found in the ankle. Now, researchers from the universities of Manchester and Liverpool have turned to nanotechnology to create artificial tendons using a spinning technique with a biodegradable plastic.

Writing in Inderscience's International Journal of Nanotechnology and Biomaterials Lucy Bosworth and Sandra Downes of the Department of Biomaterials, at the University of Manchester, and colleague Peter Clegg of The University of Liverpool, explain how materials science could be used to create very thin fibres to help regenerate damaged tendons.

Tendon injuries are a common problem facing anyone who takes part in sports or many other activities. A variety of tendons in man may be affected by injury, including tendons in the shoulder, elbows, biceps, knee, foot, and the notorious Achilles, the researchers say, while from the veterinary perspective, tendon problems in horses leads to costly losses to the racing industry.

Even with urgent treatment, scar tissue quickly forms as a tendon heals often leading to chronic pain and recurrent problems. Current treatments are ineffective, explain Bosworth and colleagues, so there is an urgent clinical need to find ways to prevent inferior scar tissue forming as an injury heals.

She and her colleagues reasoned that biocompatible fibres of the plastic polycaprolactone would not only be biocompatible and so be accepted by the body, but would be degraded over time as the injury heals and so replaced by new, healthy tissue.

They used a technique known as electrospinning to produce long, thin fibres of this material just a few thousandths the thickness of a human hair. These polymer nanofibres have a structure resembling the natural fibres of tendons; however, in this form they are not similar enough to be useful as a scaffold for tissue regeneration.

The Manchester team working with Peter Clegg, in Liverpool's Department of Veterinary Clinical Sciences, have now experimented with different electrospinning conditions to fabricate polycaprolactone nanofibres that form in long bundles that could be grouped together to form a temporary scaffold mimicking the structure of tendon tissue. Implanted into an injured tendon this scaffold material would act as a support for the growth of new tissue and prevent the formation of inferior scar tissue.

Albert Ang | alfa
Further information:
http://www.manchester.ac.uk
http://www.inderscience.com

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>