Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology could fix Achilles' heel

01.02.2008
Tissue engineered bone and skin grafts, synthetic heart valves, ceramic hip replacements… surgery is turning us into bionic people.

But the Achilles' heel in the prosthetic repertoire is fixing tendons… such as that found in the ankle. Now, researchers from the universities of Manchester and Liverpool have turned to nanotechnology to create artificial tendons using a spinning technique with a biodegradable plastic.

Writing in Inderscience's International Journal of Nanotechnology and Biomaterials Lucy Bosworth and Sandra Downes of the Department of Biomaterials, at the University of Manchester, and colleague Peter Clegg of The University of Liverpool, explain how materials science could be used to create very thin fibres to help regenerate damaged tendons.

Tendon injuries are a common problem facing anyone who takes part in sports or many other activities. A variety of tendons in man may be affected by injury, including tendons in the shoulder, elbows, biceps, knee, foot, and the notorious Achilles, the researchers say, while from the veterinary perspective, tendon problems in horses leads to costly losses to the racing industry.

Even with urgent treatment, scar tissue quickly forms as a tendon heals often leading to chronic pain and recurrent problems. Current treatments are ineffective, explain Bosworth and colleagues, so there is an urgent clinical need to find ways to prevent inferior scar tissue forming as an injury heals.

She and her colleagues reasoned that biocompatible fibres of the plastic polycaprolactone would not only be biocompatible and so be accepted by the body, but would be degraded over time as the injury heals and so replaced by new, healthy tissue.

They used a technique known as electrospinning to produce long, thin fibres of this material just a few thousandths the thickness of a human hair. These polymer nanofibres have a structure resembling the natural fibres of tendons; however, in this form they are not similar enough to be useful as a scaffold for tissue regeneration.

The Manchester team working with Peter Clegg, in Liverpool's Department of Veterinary Clinical Sciences, have now experimented with different electrospinning conditions to fabricate polycaprolactone nanofibres that form in long bundles that could be grouped together to form a temporary scaffold mimicking the structure of tendon tissue. Implanted into an injured tendon this scaffold material would act as a support for the growth of new tissue and prevent the formation of inferior scar tissue.

Albert Ang | alfa
Further information:
http://www.manchester.ac.uk
http://www.inderscience.com

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>