Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology could fix Achilles' heel

01.02.2008
Tissue engineered bone and skin grafts, synthetic heart valves, ceramic hip replacements… surgery is turning us into bionic people.

But the Achilles' heel in the prosthetic repertoire is fixing tendons… such as that found in the ankle. Now, researchers from the universities of Manchester and Liverpool have turned to nanotechnology to create artificial tendons using a spinning technique with a biodegradable plastic.

Writing in Inderscience's International Journal of Nanotechnology and Biomaterials Lucy Bosworth and Sandra Downes of the Department of Biomaterials, at the University of Manchester, and colleague Peter Clegg of The University of Liverpool, explain how materials science could be used to create very thin fibres to help regenerate damaged tendons.

Tendon injuries are a common problem facing anyone who takes part in sports or many other activities. A variety of tendons in man may be affected by injury, including tendons in the shoulder, elbows, biceps, knee, foot, and the notorious Achilles, the researchers say, while from the veterinary perspective, tendon problems in horses leads to costly losses to the racing industry.

Even with urgent treatment, scar tissue quickly forms as a tendon heals often leading to chronic pain and recurrent problems. Current treatments are ineffective, explain Bosworth and colleagues, so there is an urgent clinical need to find ways to prevent inferior scar tissue forming as an injury heals.

She and her colleagues reasoned that biocompatible fibres of the plastic polycaprolactone would not only be biocompatible and so be accepted by the body, but would be degraded over time as the injury heals and so replaced by new, healthy tissue.

They used a technique known as electrospinning to produce long, thin fibres of this material just a few thousandths the thickness of a human hair. These polymer nanofibres have a structure resembling the natural fibres of tendons; however, in this form they are not similar enough to be useful as a scaffold for tissue regeneration.

The Manchester team working with Peter Clegg, in Liverpool's Department of Veterinary Clinical Sciences, have now experimented with different electrospinning conditions to fabricate polycaprolactone nanofibres that form in long bundles that could be grouped together to form a temporary scaffold mimicking the structure of tendon tissue. Implanted into an injured tendon this scaffold material would act as a support for the growth of new tissue and prevent the formation of inferior scar tissue.

Albert Ang | alfa
Further information:
http://www.manchester.ac.uk
http://www.inderscience.com

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>