Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET scans help identify effective TB drugs, says Pitt School of Medicine study

04.12.2014

Sophisticated lung imaging can show whether or not a treatment drug is able to clear tuberculosis (TB) lung infection in human and macaque studies, according to researchers at the University of Pittsburgh School of Medicine and their international collaborators.

The findings, published online today in Science Translational Medicine, indicate the animal model can correctly predict which experimental agents have the best chance for success in human trials.


The image on the left shows 'hot spots' of infection in a patient's lungs before treatment. The image on the right shows the disease improvement after six months of taking the drug linezolid.

Credit: University of Pittsburgh

The image on the left shows "hot spots" of infection in a patient's lungs before treatment. The image on the right shows the disease improvement after six months of taking the drug linezolid.

In 2012, an estimated 8.6 million people in the world contracted TB, for which the first-line treatment demands taking four different drugs for six to eight months to get a durable cure, explained senior investigator JoAnne L. Flynn, Ph.D., professor of microbiology and molecular genetics, Pitt School of Medicine. Patients who aren't cured of the infection - about 500,000 annually - can develop multi-drug resistant TB, and have to take as many as six drugs for two years.

"Some of those people don't get cured, either, and develop what we call extensively drug-resistant, or XDR, TB, which has a very poor prognosis," she said.

"Our challenge is to find more effective treatments that work in a shorter time period, but the standard preclinical models for testing new drugs have occasionally led to contradictory results when they are evaluated in human trials."

In previous research, Dr. Flynn's colleagues at the National Institutes of Health found that the drug linezolid effectively treated XDR-TB patients who had not improved with conventional treatment, even though mouse studies suggested it would have no impact on the disease.

To further examine the effects of linezolid and another drug of the same class, Dr. Flynn and her NIH collaborators, led by Clifton E. Barry III, PH.D., performed PET/CT scans in TB-infected humans and macaques, which also get lesions known as granulomas in the lungs. In a PET scan, a tiny amount of a radioactive probe is injected into the blood that gets picked up by metabolically active cells, leaving a "hot spot" on the image.

The researchers found that humans and macaques had very similar disease profiles, and that both groups had hot spots of TB in the lungs that in most cases improved after drug treatment. CT scans, which show anatomical detail of the lungs, also indicated post-treatment improvement. One patient had a hot spot that got worse, and further testing revealed his TB strain was resistant to linezolid.

The findings show that a macaque model and PET scanning can better predict which drugs are likely to be effective in clinical trials, and that could help get new treatments to patients faster, Dr. Flynn said. The scans also could be useful as a way of confirming drug resistance, but aren't likely to be implemented routinely.

"We plan to use this PET scanning strategy to determine why some lesions don't respond to certain drugs, and to test candidate anti-TB agents," she said. "This might give us a way of tailoring treatment to individuals."

The research team includes lead author M. Teresa Coleman and others from the Pitt School of Medicine and Children's Hospital of Pittsburgh of UPMC; co-senior author Dr. Barry and others from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health; as well as scientists from the International Tuberculosis Research Center in Changwon, Republic of Korea; Rutgers New Jersey Medical School; Frederick National Laboratory for Cancer Research; Yonsei University College of Medicine, Seoul, Republic of Korea; and the University of Cape Town, Rondebosch, South Africa.

Funding for this study was provided by the National Institute of Allergy and Infectious Diseases and the National Cancer Institute; the Ministry of Health and Welfare, Republic of Korea; and the Bill and Melinda Gates Foundation.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu 

Anita Srikameswaran | EurekAlert!

Further reports about: Health Sciences Infectious Diseases Medicine PET PET scans TB drugs hot spots scans

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>