Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET scans help identify effective TB drugs, says Pitt School of Medicine study

04.12.2014

Sophisticated lung imaging can show whether or not a treatment drug is able to clear tuberculosis (TB) lung infection in human and macaque studies, according to researchers at the University of Pittsburgh School of Medicine and their international collaborators.

The findings, published online today in Science Translational Medicine, indicate the animal model can correctly predict which experimental agents have the best chance for success in human trials.


The image on the left shows 'hot spots' of infection in a patient's lungs before treatment. The image on the right shows the disease improvement after six months of taking the drug linezolid.

Credit: University of Pittsburgh

The image on the left shows "hot spots" of infection in a patient's lungs before treatment. The image on the right shows the disease improvement after six months of taking the drug linezolid.

In 2012, an estimated 8.6 million people in the world contracted TB, for which the first-line treatment demands taking four different drugs for six to eight months to get a durable cure, explained senior investigator JoAnne L. Flynn, Ph.D., professor of microbiology and molecular genetics, Pitt School of Medicine. Patients who aren't cured of the infection - about 500,000 annually - can develop multi-drug resistant TB, and have to take as many as six drugs for two years.

"Some of those people don't get cured, either, and develop what we call extensively drug-resistant, or XDR, TB, which has a very poor prognosis," she said.

"Our challenge is to find more effective treatments that work in a shorter time period, but the standard preclinical models for testing new drugs have occasionally led to contradictory results when they are evaluated in human trials."

In previous research, Dr. Flynn's colleagues at the National Institutes of Health found that the drug linezolid effectively treated XDR-TB patients who had not improved with conventional treatment, even though mouse studies suggested it would have no impact on the disease.

To further examine the effects of linezolid and another drug of the same class, Dr. Flynn and her NIH collaborators, led by Clifton E. Barry III, PH.D., performed PET/CT scans in TB-infected humans and macaques, which also get lesions known as granulomas in the lungs. In a PET scan, a tiny amount of a radioactive probe is injected into the blood that gets picked up by metabolically active cells, leaving a "hot spot" on the image.

The researchers found that humans and macaques had very similar disease profiles, and that both groups had hot spots of TB in the lungs that in most cases improved after drug treatment. CT scans, which show anatomical detail of the lungs, also indicated post-treatment improvement. One patient had a hot spot that got worse, and further testing revealed his TB strain was resistant to linezolid.

The findings show that a macaque model and PET scanning can better predict which drugs are likely to be effective in clinical trials, and that could help get new treatments to patients faster, Dr. Flynn said. The scans also could be useful as a way of confirming drug resistance, but aren't likely to be implemented routinely.

"We plan to use this PET scanning strategy to determine why some lesions don't respond to certain drugs, and to test candidate anti-TB agents," she said. "This might give us a way of tailoring treatment to individuals."

The research team includes lead author M. Teresa Coleman and others from the Pitt School of Medicine and Children's Hospital of Pittsburgh of UPMC; co-senior author Dr. Barry and others from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health; as well as scientists from the International Tuberculosis Research Center in Changwon, Republic of Korea; Rutgers New Jersey Medical School; Frederick National Laboratory for Cancer Research; Yonsei University College of Medicine, Seoul, Republic of Korea; and the University of Cape Town, Rondebosch, South Africa.

Funding for this study was provided by the National Institute of Allergy and Infectious Diseases and the National Cancer Institute; the Ministry of Health and Welfare, Republic of Korea; and the Bill and Melinda Gates Foundation.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu 

Anita Srikameswaran | EurekAlert!

Further reports about: Health Sciences Infectious Diseases Medicine PET PET scans TB drugs hot spots scans

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>