Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Liver therapy with ultrasound


Fraunhofer MEVIS coordinates EU-project for further development of an innovative, conservative therapy

Tumor removal without a scalpel or x-rays is now possible due to a special type of ultrasound. Strong, concentrated ultrasonic waves are directed at the patient’s body in such a way that they heat and kill individual cancer cells.

Illustration of numerically simulated high-intensity focused ultrasound therapy.

A new EU-project wants to transfer this emerging, non-invasive therapy to moving organs, specifically the liver. The Fraunhofer MEVIS Institute for Medical Image Computing Bremen is coordinating “TRANS-FUSIMO”.

At present, the “focused ultrasound (FUS) therapy” is approved for only two diseases – prostate cancer and selected uterine myoma. These can be treated without surgery or exposure to radiation, though liver tumors cannot due to the motion of the organ caused by respiratory movement.

This movement complicates pointing the concentrated ultrasonic wave on the tumor, as the emitted heat spreads over a larger area, inhibiting its desired effect. There is also a higher risk of damaging the surrounding tissue, not achieving the desired therapy outcome. In this case, recurrences of the tumor may occur.

Over the past three years, the scope of the EU funded project, FUSIMO (“Patient Specific Modelling and Simulation of Focused Ultrasound In Moving Organs”,, has laid the foundation for transferring FUS to moving organs.

The first step is to obtain 3D images from magnetic resonance tomography (MRT) that show the inside of the patient’s abdomen and simultaneously register the respiratory movements. Based on this data, experts can perform computer simulations of ultrasound treatment on the liver.

In the simulation, our software computes how the liver moves under respiration and thus can direct the virtual ultrasonic waves in such a way that they follow the movement of the liver and remain focused on the tumor. “In the future, such simulations can enable physicians to plan complex ultrasound interventions individual to the patient and in great detail”, says MEVIS-researcher Jan Strehlow.

“This is especially important in moving organs and can be decisive for indication whether this method of therapy is a viable option for a patient.” Furthermore, computer simulations may help shorten the duration of the ultrasound treatment.

The EU-Project, TRANS-FUSIMO, enables experts to take the next step: they strive to transfer virtual principles into real world applications and develop a system for patient treatment in the clinic. For this, a MR-scanner with a strong ultrasonic transmitter and a regular ultrasonic device are to be combined.

The latter registers the movement of the liver during respiration, in real time, while the patient is in the MR-scanner. Based on this data, the software calculates the path that the strong ultrasonic wave should take in order to stay focused on the tumor in spite of respiratory movement. During the treatment, the MR-scanner measures the distribution of temperature in the abdominal region, which allows physicians to precisely control the ultrasonic rays to target the tumor as desired.

Fraunhofer MEVIS is coordinating this EU-project and developing real-time control of all hardware systems. “Our aim is a product-capable system, for which we seek clinical approval”, says MEVIS-researcher Sabrina Haase. Over the next two years, the technology is to be tested on patients under general anesthesia; their breathing will be artificially halted, so that there is no liver movement for a short period of time. In 2018, the first patients without anesthesia are to be treated while breathing naturally. If these studies yield positive results, the new procedure may be approved.

The Fraunhofer Institute for Medical Image Computing MEVIS
Embedded in a worldwide network of clinical and academic partners, Fraunhofer MEVIS develops real-world software solutions for image-supported early detection, diagnosis, and therapy. Strong focus is placed on cancer as well as diseases of the circulatory system, brain, breast, liver, and lung. The goal is to detect diseases earlier and more reliably, tailor treatments to each individual, and make therapeutic success more measurable. In addition, the institute develops software systems for industrial partners to undertake image-based studies to determine the effectiveness of medicine and contrast agents. To reach its goals, Fraunhofer MEVIS works closely with medical technology and pharmaceutical companies, providing solutions for the entire chain of development from applied research to certified medical products.

TRANS-FUSIMO stands for “Clinical Translation of Patient-Specific Planning and Conducting of FUS Treatment in Moving Organs”. The EU-project was launched in January 2014 and will run for a period of five years with approximately 5.6 mil Euros in funding. Ten institutes from seven countries, including clinics, universities and four medical engineering institutes are participating. The Fraunhofer MEVIS Institute for Medical Image Computing Bremen is coordinating TRANS-FUSIMO.

Weitere Informationen:

Bianka Hofmann | Fraunhofer MEVIS

Further reports about: Computing Strong anesthesia diseases liver movement organs therapy waves

More articles from Medical Engineering:

nachricht Infrared thermography can detect joint inflammation and help improving work ergonomics
02.10.2015 | University of Eastern Finland

nachricht MRI technique could reduce need for breast biopsies
29.09.2015 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>