Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver therapy with ultrasound

27.03.2014

Fraunhofer MEVIS coordinates EU-project for further development of an innovative, conservative therapy

Tumor removal without a scalpel or x-rays is now possible due to a special type of ultrasound. Strong, concentrated ultrasonic waves are directed at the patient’s body in such a way that they heat and kill individual cancer cells.


Illustration of numerically simulated high-intensity focused ultrasound therapy.

A new EU-project wants to transfer this emerging, non-invasive therapy to moving organs, specifically the liver. The Fraunhofer MEVIS Institute for Medical Image Computing Bremen is coordinating “TRANS-FUSIMO”.

At present, the “focused ultrasound (FUS) therapy” is approved for only two diseases – prostate cancer and selected uterine myoma. These can be treated without surgery or exposure to radiation, though liver tumors cannot due to the motion of the organ caused by respiratory movement.

This movement complicates pointing the concentrated ultrasonic wave on the tumor, as the emitted heat spreads over a larger area, inhibiting its desired effect. There is also a higher risk of damaging the surrounding tissue, not achieving the desired therapy outcome. In this case, recurrences of the tumor may occur.

Over the past three years, the scope of the EU funded project, FUSIMO (“Patient Specific Modelling and Simulation of Focused Ultrasound In Moving Organs”, www.fusimo.eu), has laid the foundation for transferring FUS to moving organs.

The first step is to obtain 3D images from magnetic resonance tomography (MRT) that show the inside of the patient’s abdomen and simultaneously register the respiratory movements. Based on this data, experts can perform computer simulations of ultrasound treatment on the liver.

In the simulation, our software computes how the liver moves under respiration and thus can direct the virtual ultrasonic waves in such a way that they follow the movement of the liver and remain focused on the tumor. “In the future, such simulations can enable physicians to plan complex ultrasound interventions individual to the patient and in great detail”, says MEVIS-researcher Jan Strehlow.

“This is especially important in moving organs and can be decisive for indication whether this method of therapy is a viable option for a patient.” Furthermore, computer simulations may help shorten the duration of the ultrasound treatment.

The EU-Project, TRANS-FUSIMO, enables experts to take the next step: they strive to transfer virtual principles into real world applications and develop a system for patient treatment in the clinic. For this, a MR-scanner with a strong ultrasonic transmitter and a regular ultrasonic device are to be combined.

The latter registers the movement of the liver during respiration, in real time, while the patient is in the MR-scanner. Based on this data, the software calculates the path that the strong ultrasonic wave should take in order to stay focused on the tumor in spite of respiratory movement. During the treatment, the MR-scanner measures the distribution of temperature in the abdominal region, which allows physicians to precisely control the ultrasonic rays to target the tumor as desired.

Fraunhofer MEVIS is coordinating this EU-project and developing real-time control of all hardware systems. “Our aim is a product-capable system, for which we seek clinical approval”, says MEVIS-researcher Sabrina Haase. Over the next two years, the technology is to be tested on patients under general anesthesia; their breathing will be artificially halted, so that there is no liver movement for a short period of time. In 2018, the first patients without anesthesia are to be treated while breathing naturally. If these studies yield positive results, the new procedure may be approved.

The Fraunhofer Institute for Medical Image Computing MEVIS
Embedded in a worldwide network of clinical and academic partners, Fraunhofer MEVIS develops real-world software solutions for image-supported early detection, diagnosis, and therapy. Strong focus is placed on cancer as well as diseases of the circulatory system, brain, breast, liver, and lung. The goal is to detect diseases earlier and more reliably, tailor treatments to each individual, and make therapeutic success more measurable. In addition, the institute develops software systems for industrial partners to undertake image-based studies to determine the effectiveness of medicine and contrast agents. To reach its goals, Fraunhofer MEVIS works closely with medical technology and pharmaceutical companies, providing solutions for the entire chain of development from applied research to certified medical products. http://www.mevis.fraunhofer.de/en

TRANS-FUSIMO
TRANS-FUSIMO stands for “Clinical Translation of Patient-Specific Planning and Conducting of FUS Treatment in Moving Organs”. The EU-project was launched in January 2014 and will run for a period of five years with approximately 5.6 mil Euros in funding. Ten institutes from seven countries, including clinics, universities and four medical engineering institutes are participating. The Fraunhofer MEVIS Institute for Medical Image Computing Bremen is coordinating TRANS-FUSIMO.
http://www.trans-fusimo.eu

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/liver-therapy-with-...

Bianka Hofmann | Fraunhofer MEVIS

Further reports about: Computing Strong anesthesia diseases liver movement organs therapy waves

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>