Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SAFEPED Helps Cities Fix Dangerous Intersections

13.09.2011
TAU researchers develop program to identify traffic "black spots"

Traffic planners and engineers worry about “black spots” — intersections that experience a high incidence of traffic accidents. But when it comes to designing safer roads, they lack effective tools to determine what turns a junction into a danger zone for cars and pedestrians alike.


Now Ph.D. student Gennady Waizman of Tel Aviv University’s Geosimulation Lab at the Department of Geography and the Human Environment and Porter School of Environmental Science has developed SAFEPED, a computer simulation that integrates robotics and statistics on driver and pedestrian behavior to determine the environmental features which lead to these black spots. Based on real-world data, SAFEPED is more true-to-life than other computer traffic models.

SAFEPED allows traffic planners and engineers to analyze and fix dangerous intersections. It also permits these engineers to test and rearrange the architecture of a planned junction and design it for optimal safety. The model has been presented at the Transportation Research Board Conference on Safety and Mobility in Jerusalem, and this July at the Geocomputation 2011 conference in London.

Countdown to collision

SAFEPED considers each car and pedestrian an autonomous “agent,” with the ability to reason and react based on its individual predictions of how surrounding agents will behave. This is a significant improvement on other computer models of traffic, which do not account for the human ability to see the world in three dimensions, predict the actions of others, and react accordingly.

“Because drivers and pedestrians behave according to the same habits and rules at any intersection they approach,” Waizman explains, “we presumed that the problem lay in the environment. With this program, we can model a real intersection in the simulator, and make modifications to the environment or traffic regulations to see how they impact the safety of the junction.”

But the researchers knew that it was not enough to place traditional robotic agents into the environment. Such non-thinking robots could not give them an accurate indication of how a changed traffic architecture could affect accident rates. Instead, Waizman’s team based their simulator on a theory of visual perception developed by the cognitive scientist James J. Gibson. When humans move through a given environment, Gibson theorized, they analyze their “optic flow” as they move, taking into account their anticipated time of collision with other objects or people.

Averting a crash before it happens

In SAFEPED, all agents move and think individually, and they determine their actions based on visibility and the movement of the other agents. Depending on what they perceive and predict, agents slow down, accelerate, or divert. The researchers can see an accident from the viewpoint of any agent to determine where visibility was impaired or an agent made a wrong decision. They can also rewind a virtual accident and determine if a change in regulations or architecture could have averted the crash.

The agents’ behavior is based on traffic statistics provided by the Israeli police force and on hours of observation by M.A. student Eilon Blank-Baron, who recorded videos of intersections, analyzed the behavior of the moving drivers and pedestrians, and integrated the resulting data into SAFEPED to make the simulator more realistic. Two synchronized cameras observed how cars and pedestrians reacted to one another.

The SAFEPED research has already led to many important findings. The probability that pedestrians will cross a busy road, for example, is based on how they estimate the velocity of an approaching car. If they believe the car will cross the intersection in less than 2.5 seconds, people will not cross. At 5.5 or 6 seconds, however, most people will cross the road. It also found that the further back a white stop line is set in an intersection, the smaller the chance that a pedestrian will be struck by a car.

Waizman’s and Blank-Baron’s research is supervised by Prof. Itzhak Benenson of TAU’s Department of Geography and Human Environment and Prof. Shraga Shoval of the Ariel University Center.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=15227

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>