50-million-year-old clam shells provide indications of future of El Niño phenomenon

This is the conclusion drawn by an international team of researchers after it investigated 50-million-year-old clam shells and wood from the Antarctic. The growth rings of these fossils indicate that there was also a climate rhythm over the South Pacific during the last prolonged interglacial phase of the Earth’s history resembling the present-day interplay of El Niño and La Niña.

Floods in Peru, drought in Australia: When the South Pacific Ocean warms up at an above-average rate every three to six years and “El Niño” influences weather patterns, the world in the coastal countries affected is turned completely around. Fishermen come back with empty nets, crops are lost, food prices increase and nearly everyone hopes the warm phase of the climate phenomenon “El Niño Southern Oscillation (ENSO)” will abate as quickly as possible.

The ENSO phenomenon still changes regularly from its cold phase (La Niña) to the warm phase (El Niño) and back. But what will things be like in the future? How will the worldwide temperature rise influence ENSO? Will there perhaps be a permanent El Niño? To answer this important question, scientists are looking at the past – particularly at the Eocene period 60 to 37 million years ago. “The Eocene is considered to be the last real prolonged warm period. At that time the Antarctic was ice-free and green. Even trees grew and we know about the water temperature of the ocean that it fluctuated between 10 and 16 degrees Celsius over the year,” says Thomas Brey, biologist at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association.

He and colleagues from the USA and Germany have now succeeded for the first time in verifying a rhythm according to the pattern of the ENSO phenomenon in the growth patterns of fossil clams and wood from the early Eocene. Their results will soon appear in the journal Geophysical Research Letter and are already available on its website in a text entitled “El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica”.

Brey and his colleagues investigated shells of the bivalve species Cucullaea Raea and Eurhomalea antarctica that are 50 million years old as well as a piece of wood from Seymour Island in the Antarctic. “Like trees, clams form growth rings. We measured their width and examined them for growth rhythms,” states Brey.

Whether clams grow depends on the availability of food and heat. “That means the change from “good” and “poor” environmental conditions at that time is still reflected in the width of the growth rings we find today. And as we were able to show, this change took place in the same three to six year rhythm we are familiar with in connection with ENSO today,” says Brey.

The shells are a real piece of luck for him. “To verify ENSO, we need climate archives that cover the largest possible period year by year. Back then clams lived for up to 100 years. This is a good basis for our work.”

To examine the significance of the growth rings of clams and wood, the researchers compared their measurement results with current ENSO data as well as with the ENSO-like fluctuations produced by a climate model of the Eocene. The result: all patterns correspond. “Our results are a strong indication that an ENSO phenomenon which fluctuated between warm and cold phases also existed in the warm Eocene,” says Brey.

Good news! Should the scientists be right, these findings mean for the future that in all likelihood the worldwide temperature rise will not disrupt the ENSO climate rhythm above the South Pacific Ocean.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Media Contact

Sina Löschke idw

More Information:

http://www.awi.de

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors