Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering device promises a safer future for rail travel

04.11.2003


A tiny electronic device which could prevent rail disasters will be showcased today – by scientists who created it less than a mile from where the railway revolution began.



Microlog, a highly advanced miniature data logger, weighs less than ten grammes and boasts a four megabyte memory, a powerful 16 byte microprocessor and satellite and mobile phone technology packed into one third of the size of a matchbox.

It has been developed by a father and son team at the University of Newcastle upon Tyne’s Stephenson Centre, a new venture inspired by the 19th Century entrepreneur, Robert Stephenson, who built the Rocket locomotive in a nearby Newcastle factory with his father, George.


Tests on the device are due to start shortly on the GNER east coast main line, a route which Stephenson was involved in developing almost two centuries ago.

Microlog is able to detect suspect areas on rail tracks where problems could lead to train disasters, and can use its technology to send a rapid warning signal to operators.

It works by being installed on the train’s wheel axles, which bend and twist under stress as the train runs along the rail lines at high speeds.

The highly sensitive Microlog is able to detect any abnormal stresses which could be caused by problems on the track – for example, buckling due to excessive heat. The results will also help to better understand wheel-rail interaction and to establish more reliable codes for future axle design.

The device logs the relevant data and uses satellite technology to detect the exact location of the problem. It then uses the mobile phone technology to send a warning message to a computer miles away. A highly sophisticated software package analyses the data and alerts train operators to any problem that needs urgent troubleshooting.

Microlog is the product of years of development by scientists with Newcastle University’s Design Unit, one of the six outreach business consultancies which have become part of the Stephenson Centre and are known collectively as the Stephenson Group.

They have exploited highly advanced technology to create the miniature device and some of its components are so small that they are hardly visible to the human eye. Microlog can also be remotely accessed and reprogrammed using a short-range radio, the Internet, or via the GSM network.

Lead researcher Dr Jarek Rosinski, who developed Microlog with his 18-year-old son, Martin, who is a Newcastle University student, said: "Although data loggers have been used for more than two decades, they have always been relatively big and their use has therefore been limited.

"Microlog is unique because of its miniature size, which allows us greater flexibility and means we can to fit it to smaller components such as train axles. The computer software which accompanies it is also extremely sophisticated.

"We have been working over several years to perfect the design and we are confident it has huge potential in a variety of applications, rail safety being just one of them."

Microlog is already being used throughout the world: to troubleshoot power plants; in rail, automotive and marine industries; and data gathering in research and development.

Dr Jarek Rosinski | EurekAlert!

More articles from Transportation and Logistics:

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>