Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering device promises a safer future for rail travel

04.11.2003


A tiny electronic device which could prevent rail disasters will be showcased today – by scientists who created it less than a mile from where the railway revolution began.



Microlog, a highly advanced miniature data logger, weighs less than ten grammes and boasts a four megabyte memory, a powerful 16 byte microprocessor and satellite and mobile phone technology packed into one third of the size of a matchbox.

It has been developed by a father and son team at the University of Newcastle upon Tyne’s Stephenson Centre, a new venture inspired by the 19th Century entrepreneur, Robert Stephenson, who built the Rocket locomotive in a nearby Newcastle factory with his father, George.


Tests on the device are due to start shortly on the GNER east coast main line, a route which Stephenson was involved in developing almost two centuries ago.

Microlog is able to detect suspect areas on rail tracks where problems could lead to train disasters, and can use its technology to send a rapid warning signal to operators.

It works by being installed on the train’s wheel axles, which bend and twist under stress as the train runs along the rail lines at high speeds.

The highly sensitive Microlog is able to detect any abnormal stresses which could be caused by problems on the track – for example, buckling due to excessive heat. The results will also help to better understand wheel-rail interaction and to establish more reliable codes for future axle design.

The device logs the relevant data and uses satellite technology to detect the exact location of the problem. It then uses the mobile phone technology to send a warning message to a computer miles away. A highly sophisticated software package analyses the data and alerts train operators to any problem that needs urgent troubleshooting.

Microlog is the product of years of development by scientists with Newcastle University’s Design Unit, one of the six outreach business consultancies which have become part of the Stephenson Centre and are known collectively as the Stephenson Group.

They have exploited highly advanced technology to create the miniature device and some of its components are so small that they are hardly visible to the human eye. Microlog can also be remotely accessed and reprogrammed using a short-range radio, the Internet, or via the GSM network.

Lead researcher Dr Jarek Rosinski, who developed Microlog with his 18-year-old son, Martin, who is a Newcastle University student, said: "Although data loggers have been used for more than two decades, they have always been relatively big and their use has therefore been limited.

"Microlog is unique because of its miniature size, which allows us greater flexibility and means we can to fit it to smaller components such as train axles. The computer software which accompanies it is also extremely sophisticated.

"We have been working over several years to perfect the design and we are confident it has huge potential in a variety of applications, rail safety being just one of them."

Microlog is already being used throughout the world: to troubleshoot power plants; in rail, automotive and marine industries; and data gathering in research and development.

Dr Jarek Rosinski | EurekAlert!

More articles from Transportation and Logistics:

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Combating traffic congestion with advanced data analytics
17.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>