Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering device promises a safer future for rail travel

04.11.2003


A tiny electronic device which could prevent rail disasters will be showcased today – by scientists who created it less than a mile from where the railway revolution began.



Microlog, a highly advanced miniature data logger, weighs less than ten grammes and boasts a four megabyte memory, a powerful 16 byte microprocessor and satellite and mobile phone technology packed into one third of the size of a matchbox.

It has been developed by a father and son team at the University of Newcastle upon Tyne’s Stephenson Centre, a new venture inspired by the 19th Century entrepreneur, Robert Stephenson, who built the Rocket locomotive in a nearby Newcastle factory with his father, George.


Tests on the device are due to start shortly on the GNER east coast main line, a route which Stephenson was involved in developing almost two centuries ago.

Microlog is able to detect suspect areas on rail tracks where problems could lead to train disasters, and can use its technology to send a rapid warning signal to operators.

It works by being installed on the train’s wheel axles, which bend and twist under stress as the train runs along the rail lines at high speeds.

The highly sensitive Microlog is able to detect any abnormal stresses which could be caused by problems on the track – for example, buckling due to excessive heat. The results will also help to better understand wheel-rail interaction and to establish more reliable codes for future axle design.

The device logs the relevant data and uses satellite technology to detect the exact location of the problem. It then uses the mobile phone technology to send a warning message to a computer miles away. A highly sophisticated software package analyses the data and alerts train operators to any problem that needs urgent troubleshooting.

Microlog is the product of years of development by scientists with Newcastle University’s Design Unit, one of the six outreach business consultancies which have become part of the Stephenson Centre and are known collectively as the Stephenson Group.

They have exploited highly advanced technology to create the miniature device and some of its components are so small that they are hardly visible to the human eye. Microlog can also be remotely accessed and reprogrammed using a short-range radio, the Internet, or via the GSM network.

Lead researcher Dr Jarek Rosinski, who developed Microlog with his 18-year-old son, Martin, who is a Newcastle University student, said: "Although data loggers have been used for more than two decades, they have always been relatively big and their use has therefore been limited.

"Microlog is unique because of its miniature size, which allows us greater flexibility and means we can to fit it to smaller components such as train axles. The computer software which accompanies it is also extremely sophisticated.

"We have been working over several years to perfect the design and we are confident it has huge potential in a variety of applications, rail safety being just one of them."

Microlog is already being used throughout the world: to troubleshoot power plants; in rail, automotive and marine industries; and data gathering in research and development.

Dr Jarek Rosinski | EurekAlert!

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>