Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study seeks to identify and minimize danger to aviation from cosmic radiation

23.10.2003


Scientists have long known of the potential risk from cosmic rays and other aspects of space weather, such as streams of protons from the Sun, to airline electronic systems, passengers, and crews. It has not been feasible to quantify this risk, however, as systematic data are lacking on the actual amount of rays and the charged particles and neutrons they create in Earth’s atmosphere that are encountered during typical flights. Researchers have now begun collecting that information, thanks to a newly developed instrument, the Low Linear-Energy-Transfer Radiation Spectrometer (LoLRS).



The need to know the precise level of cosmic and solar radiation along air routes has become more acute, as recent generations of commercial aircraft use "fly-by-wire" control systems, managed by on-board computers, which are subject to damage by high radiation levels. Future aircraft will employ even more sensitive technologies, and will therefore be more susceptible to damage.

"This substantially increases the need to improve the definition of the atmospheric radiation field as a function of location and time, and to reduce the significant uncertainties associated with present day predictions," says Epaminondas G. Stassinopoulos of NASA’s Goddard Space Flight Center, lead researcher of the project. Their report is one of the first papers published in the American Geophysical Union’s new journal, Space Weather.


With the cooperation of Evergreen International Airlines, which flies long distance cargo routes, LoLRS instruments have been flown aboard Boeing 747s across the Atlantic and Pacific Oceans, across the United States, the length of Africa, and, more recently, in the Arctic. Repetitive flights over the same routes have enabled the scientists to begin studying the long term effects of solar and environmental influences at aviation altitudes.

During each flight, every change in the plane’s altitude and direction is recorded, because such factors as weather and traffic affect the exact route and altitude of a flight, regardless of the original flight plan. It is essential for the researchers to know the precise location, altitude, and time of each radiation measurement.

Ultimately, Stassinopoulos and his colleagues hope to produce global maps that reflect the dynamic nature of the atmospheric radiation field. This will require the collection of a large quantity of data, and the researchers are therefore developing techniques for analyzing the collected information. The research will involve both aircraft and high altitude balloons that circle the polar regions for long periods.

The preliminary tests have confirmed that doses of radiation from cosmic rays and the particles they create are more intense at higher altitudes and at higher latitudes; that is, they are strongest in the Arctic and Antarctic regions. This is particularly true during solar storms, during which large quantities of charged particles reach Earth’s atmosphere. The scientists hope that the new study will go far beyond previous research in this field and facilitate the construction of models that would be of real use for planners of aircraft routes.


AGU is providing free, open access to the journal Space Weather from its launch, planned for 28 October, through 31 March 2004. The journal will include technical articles, news items, feature stories, editorials, and opinion articles. A quarterly paper edition will print a selection of the material previously published online. Space Weather may be found at http://www.agu.org/journals/spaceweather. For further information, see AGU Press Release 03-05 at http://www.agu.org/sci_soc/prrl/prrl0305.html

Harvey Leifert | AGU
Further information:
http://www.agu.org/sci_soc/prrl/prrl0305.html
http://www.agu.org/

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>