Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study seeks to identify and minimize danger to aviation from cosmic radiation

23.10.2003


Scientists have long known of the potential risk from cosmic rays and other aspects of space weather, such as streams of protons from the Sun, to airline electronic systems, passengers, and crews. It has not been feasible to quantify this risk, however, as systematic data are lacking on the actual amount of rays and the charged particles and neutrons they create in Earth’s atmosphere that are encountered during typical flights. Researchers have now begun collecting that information, thanks to a newly developed instrument, the Low Linear-Energy-Transfer Radiation Spectrometer (LoLRS).



The need to know the precise level of cosmic and solar radiation along air routes has become more acute, as recent generations of commercial aircraft use "fly-by-wire" control systems, managed by on-board computers, which are subject to damage by high radiation levels. Future aircraft will employ even more sensitive technologies, and will therefore be more susceptible to damage.

"This substantially increases the need to improve the definition of the atmospheric radiation field as a function of location and time, and to reduce the significant uncertainties associated with present day predictions," says Epaminondas G. Stassinopoulos of NASA’s Goddard Space Flight Center, lead researcher of the project. Their report is one of the first papers published in the American Geophysical Union’s new journal, Space Weather.


With the cooperation of Evergreen International Airlines, which flies long distance cargo routes, LoLRS instruments have been flown aboard Boeing 747s across the Atlantic and Pacific Oceans, across the United States, the length of Africa, and, more recently, in the Arctic. Repetitive flights over the same routes have enabled the scientists to begin studying the long term effects of solar and environmental influences at aviation altitudes.

During each flight, every change in the plane’s altitude and direction is recorded, because such factors as weather and traffic affect the exact route and altitude of a flight, regardless of the original flight plan. It is essential for the researchers to know the precise location, altitude, and time of each radiation measurement.

Ultimately, Stassinopoulos and his colleagues hope to produce global maps that reflect the dynamic nature of the atmospheric radiation field. This will require the collection of a large quantity of data, and the researchers are therefore developing techniques for analyzing the collected information. The research will involve both aircraft and high altitude balloons that circle the polar regions for long periods.

The preliminary tests have confirmed that doses of radiation from cosmic rays and the particles they create are more intense at higher altitudes and at higher latitudes; that is, they are strongest in the Arctic and Antarctic regions. This is particularly true during solar storms, during which large quantities of charged particles reach Earth’s atmosphere. The scientists hope that the new study will go far beyond previous research in this field and facilitate the construction of models that would be of real use for planners of aircraft routes.


AGU is providing free, open access to the journal Space Weather from its launch, planned for 28 October, through 31 March 2004. The journal will include technical articles, news items, feature stories, editorials, and opinion articles. A quarterly paper edition will print a selection of the material previously published online. Space Weather may be found at http://www.agu.org/journals/spaceweather. For further information, see AGU Press Release 03-05 at http://www.agu.org/sci_soc/prrl/prrl0305.html

Harvey Leifert | AGU
Further information:
http://www.agu.org/sci_soc/prrl/prrl0305.html
http://www.agu.org/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>