Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Zombie ants have fungus on the brain

Tropical carpenter ants (Camponotus leonardi) live high up in the rainforest canopy. When infected by a parasitic fungus (Ophiocordyceps unilateralis) the behaviour of the ants is dramatically changed.

They become erratic and zombie-like, and are manipulated by the fungus into dying at a spot that provides optimal conditions for fungal reproduction. New research, published in BioMed Central's open access journal BMC Ecology, looks at altered behaviour patterns in Zombie ants in Thailand and shows how the fungus manipulates ant behaviour.

A multinational team of researchers investigated O. unilateralis infected carpenter ants in Thailand's rainforest. The growing fungus fills the ant's body and head causing muscles to atrophy and forcing muscle fibres apart. The fungus also affects the ant's central nervous system and while normal worker ants rarely left the trail, zombie ants walked in a random manner, unable to find their way home. The ants also suffered convulsions which caused them to fall to the ground. Once on the ground the ants were unable to find their way back to the canopy and remained at a lower, leafy, 'understory' which, at about 25cm above the soil was cooler and moister than the canopy, provided ideal conditions for the fungus to thrive.

At solar noon (when the sun is at its strongest) the fungus synchronised ant behaviour, forcing infected ants to bite the main vein on the underside of a leaf. The multiplying fungal cells in the ant's head cause fibres within the muscles that open and close the ant's mandibles to become detached. This results in 'lock jaw' which means that an infected ant is unable to release the leaf even after death. A few days later the fungus generates a fruiting body (stroma) from the ant's head which releases spores to be picked up by another wandering ant.

Dr David Hughes, from Penn State University, said, "The fungus attacks the ants on two fronts. Firstly by using the ant as a walking food source, and secondly by damaging muscle and the ant's central nervous system, resulting in zombie walking and the death bite, which place the ant in the cool damp understory. Together these provide the perfect environment for fungal growth and reproduction. This behaviour of infected ants is essentially an extended phenotype of the fungus (fungal behaviour through the ant's body) as non-infected ants never behave in this way."

Notes to Editors

1. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection
David P Hughes, Sandra Andersen, Nigel L Hywel-Jones, Winanda Himaman, Johan Billen and Jacobus J Boomsma

BMC Ecology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at on the day of publication.

2. BMC Ecology is an Open Access, peer-reviewed journal that considers articles on environmental, behavioral and population ecology as well as biodiversity of plants, animals, and microbes.

3. BioMed Central ( is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>