Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zombie ants have fungus on the brain

09.05.2011
Tropical carpenter ants (Camponotus leonardi) live high up in the rainforest canopy. When infected by a parasitic fungus (Ophiocordyceps unilateralis) the behaviour of the ants is dramatically changed.

They become erratic and zombie-like, and are manipulated by the fungus into dying at a spot that provides optimal conditions for fungal reproduction. New research, published in BioMed Central's open access journal BMC Ecology, looks at altered behaviour patterns in Zombie ants in Thailand and shows how the fungus manipulates ant behaviour.

A multinational team of researchers investigated O. unilateralis infected carpenter ants in Thailand's rainforest. The growing fungus fills the ant's body and head causing muscles to atrophy and forcing muscle fibres apart. The fungus also affects the ant's central nervous system and while normal worker ants rarely left the trail, zombie ants walked in a random manner, unable to find their way home. The ants also suffered convulsions which caused them to fall to the ground. Once on the ground the ants were unable to find their way back to the canopy and remained at a lower, leafy, 'understory' which, at about 25cm above the soil was cooler and moister than the canopy, provided ideal conditions for the fungus to thrive.

At solar noon (when the sun is at its strongest) the fungus synchronised ant behaviour, forcing infected ants to bite the main vein on the underside of a leaf. The multiplying fungal cells in the ant's head cause fibres within the muscles that open and close the ant's mandibles to become detached. This results in 'lock jaw' which means that an infected ant is unable to release the leaf even after death. A few days later the fungus generates a fruiting body (stroma) from the ant's head which releases spores to be picked up by another wandering ant.

Dr David Hughes, from Penn State University, said, "The fungus attacks the ants on two fronts. Firstly by using the ant as a walking food source, and secondly by damaging muscle and the ant's central nervous system, resulting in zombie walking and the death bite, which place the ant in the cool damp understory. Together these provide the perfect environment for fungal growth and reproduction. This behaviour of infected ants is essentially an extended phenotype of the fungus (fungal behaviour through the ant's body) as non-infected ants never behave in this way."

Notes to Editors

1. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection
David P Hughes, Sandra Andersen, Nigel L Hywel-Jones, Winanda Himaman, Johan Billen and Jacobus J Boomsma

BMC Ecology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Ecology is an Open Access, peer-reviewed journal that considers articles on environmental, behavioral and population ecology as well as biodiversity of plants, animals, and microbes.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>