Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wired for sight

31.05.2010
The copy of the gene Ube3a inherited from the mother—not the father—is crucial to proper wiring of the visual cortex in mice after birth, a RIKEN researcher and his American co-worker have found1.

In human babies, a defective maternal Ube3a gene causes a developmental condition known as Angelman syndrome that leads to mental retardation, speech impairment and brain seizures, and affects behavior. The researchers therefore suggest that stimulating the silenced paternal gene at the right time of development might be worth exploring as therapy for this syndrome.

Nerve cell wiring of the visual cortex of the brain occurs after birth, and is then refined by experience. Typically, images are constructed using signals from nerve cells that receive more input from one eye than the other, an occurrence known as ocular dominance (OD). The balance of OD displays plasticity; it can be altered, for instance, by temporarily blinding one eye during the critical period of development when the interconnections of nerve cells in the brain are susceptible to experience.

Masaaki Sato from the RIKEN Brain Science Institute, Wako, and Michael Stryker from the University of California, San Francisco, confirmed in mice that by about four weeks of age—their critical period of development—the presence of the Ube3a protein is mainly restricted to the nucleus of nerve cells in the visual cortex of the brain; and it is dependent on the maternal gene.

The researchers then investigated how the interconnections of the nerve cells could be changed before, during and after the critical period. They tested these changes using optical imaging, a technique that can provide information on activity in the brain. They found that both maternal and paternal copies of the gene contributed to normal development until the critical period. From this stage on, however, the maternal copy alone was active and required for maturation of the cortical circuits. Without the maternal gene the visual system did not rapidly adjust OD to the experience of having one eye briefly blinded during the critical period. And afterwards, there was impairment of the ability to make the minor wiring adjustments as the system matured.

“We now want to investigate how Ube3a participates in the maturation process of cortical neuronal circuits,” Sato says. “The other direction [of our work] will be to screen genes or compounds which have potential to restore the impaired plasticity of Ube3a maternal-deficient mice.”

The corresponding author for this highlight is based at the Laboratory for Synaptic Function, RIKEN Brain Science Institute

Journal information

1. Sato, M. & Stryker, M.P. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proceedings of the National Academy of Sciences USA 107, 5611–5616 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6283
http://www.researchsea.com

Further reports about: Angelman syndrome Brain RIKEN Science TV UBE3A nerve cell visual cortex

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>