Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White Glow

08.07.2009
Dye-doped DNA nanofibers emit white light

Efficient energy transport plays an important role in the development of optoelectonic materials.

The true masters of energy transfer via a hierarchical arrangement of different molecules are the photosynthetic mechanisms of plants. Self-organized systems of biomolecules could also provide a starting point for effective energy transport in future opotoelectronic devices.

A team of researchers at the University of Connecticut and the US Air Force Research Laboratory has now successfully used the electrospinning of DNA complexes to produce nanofibers that incorporate two different fluorescing dyes in such a way that energy can efficiently be transferred from one dye to the other. The color of the resulting fluorescence can be controlled by means of the ratio of the two dyes. As reported in the journal Angewandte Chemie, the team led by Gregory A. Sotzing was thus able to produce nanofibers that emit pure white light—a color that is usually very difficult to achieve in such systems.

In the electrospinning process, a polymer solution is propelled through an electrical field. This results in the formation of nanofibers that are deposited in the form of a mat. When DNA is subjected to such a spinning process in the presence of a surfactant and the desired fluorescence dyes, the result is a network of DNA fibers with organized microstructure containing a very uniform distribution of the dyes.

Both dyes are tuned so that they can enter into a special interaction called fluorescence resonance energy transfer (FRET). In this process, “energy packets” from an excited fluorescence dye (donor) are transferred to a second fluorescence dye (acceptor) with no radiation. The intensity of the FRET depends, among other things, on the distance between the two dyes. The two dyes bind to different locations on the DNA, so that the correct spatial distribution for optimal FRET can be maintained—even at low acceptor concentrations.

Upon irradiation with UV light, the donor absorbs the photons and emits blue light. If acceptor molecules are present at the right distance, some of this energy is not re-emitted; instead it is “passed on” from the donor to the acceptor by means of the radiation-free FRET process. The excited acceptor molecules then emit the energy as fluorescence—in orange. Depending on the ratio of donor and acceptor concentrations, the color of the light changes—from blue through pure white to orange. The color can also be fine-tuned by changing the overall dye density in the matrix. Increasing the dye loads from 1.33 to 10 % can change a “cold” white light to a “warm” tone.

Author: Gregory A. Sotzing, University of Connecticut, Storrs (USA), http://chemistry.uconn.edu/sotzing.html

Title: White Luminescence from Multiple-Dye-Doped Electrospun DNA Nanofibers by Fluorescence Resonance Energy Transfer

Angewandte Chemie International Edition 2009, 48, No. 28, 5134–5138, doi: 10.1002/anie.200900885

Gregory A. Sotzing | Angewandte Chemie
Further information:
http://chemistry.uconn.edu/sotzing.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>