Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White Glow

08.07.2009
Dye-doped DNA nanofibers emit white light

Efficient energy transport plays an important role in the development of optoelectonic materials.

The true masters of energy transfer via a hierarchical arrangement of different molecules are the photosynthetic mechanisms of plants. Self-organized systems of biomolecules could also provide a starting point for effective energy transport in future opotoelectronic devices.

A team of researchers at the University of Connecticut and the US Air Force Research Laboratory has now successfully used the electrospinning of DNA complexes to produce nanofibers that incorporate two different fluorescing dyes in such a way that energy can efficiently be transferred from one dye to the other. The color of the resulting fluorescence can be controlled by means of the ratio of the two dyes. As reported in the journal Angewandte Chemie, the team led by Gregory A. Sotzing was thus able to produce nanofibers that emit pure white light—a color that is usually very difficult to achieve in such systems.

In the electrospinning process, a polymer solution is propelled through an electrical field. This results in the formation of nanofibers that are deposited in the form of a mat. When DNA is subjected to such a spinning process in the presence of a surfactant and the desired fluorescence dyes, the result is a network of DNA fibers with organized microstructure containing a very uniform distribution of the dyes.

Both dyes are tuned so that they can enter into a special interaction called fluorescence resonance energy transfer (FRET). In this process, “energy packets” from an excited fluorescence dye (donor) are transferred to a second fluorescence dye (acceptor) with no radiation. The intensity of the FRET depends, among other things, on the distance between the two dyes. The two dyes bind to different locations on the DNA, so that the correct spatial distribution for optimal FRET can be maintained—even at low acceptor concentrations.

Upon irradiation with UV light, the donor absorbs the photons and emits blue light. If acceptor molecules are present at the right distance, some of this energy is not re-emitted; instead it is “passed on” from the donor to the acceptor by means of the radiation-free FRET process. The excited acceptor molecules then emit the energy as fluorescence—in orange. Depending on the ratio of donor and acceptor concentrations, the color of the light changes—from blue through pure white to orange. The color can also be fine-tuned by changing the overall dye density in the matrix. Increasing the dye loads from 1.33 to 10 % can change a “cold” white light to a “warm” tone.

Author: Gregory A. Sotzing, University of Connecticut, Storrs (USA), http://chemistry.uconn.edu/sotzing.html

Title: White Luminescence from Multiple-Dye-Doped Electrospun DNA Nanofibers by Fluorescence Resonance Energy Transfer

Angewandte Chemie International Edition 2009, 48, No. 28, 5134–5138, doi: 10.1002/anie.200900885

Gregory A. Sotzing | Angewandte Chemie
Further information:
http://chemistry.uconn.edu/sotzing.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>