Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wheat can't stop Hessian flies, so scientists find reinforcements

13.12.2011
Wheat's genetic resistance to Hessian flies has been failing, but a group of Purdue University and U.S. Department of Agriculture scientists believe that other plants may soon be able to come to the rescue.

The Purdue and USDA research team developed a method to test toxins from other plants on Hessian fly larvae. The test simulates the effect of a transgenic plant without the lengthy and costly procedures necessary to actually create those plants.

"For years, people have tried to develop a bioassay, but that hadn't happened until now," said Richard Shukle, a research scientist with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit working in Purdue Entomology, whose findings were published in the Journal of Insect Physiology.

Shukle said the 33 genes known to give wheat resistance to Hessian fly attacks have been failing, causing scientists to develop methods to stack those genes together as a defense. But another solution could include adding other plants' toxins to wheat to bolster its defenses.

The problem has been with the unique way in which Hessian fly larvae attack and feed off wheat. The larvae secrete a substance onto the plants that creates a sort of wound on the plant tissue, opening it up for the larvae to feed on.

Toxins can be tested on other pests by adding those toxins to a plant-based artificial diet and feeding them to the insects. But Hessian fly larvae won't take the bait, meaning that until now the only way to test poisons from other plants was to create lines of transgenic wheat and feed them to the flies.

"This feeding assay is significant. This gives us a way to test these toxins," said Christie Williams, a co-author of the findings and a research scientist with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit working in Purdue Entomology. "A preliminary chemical assay might give us promising results. But then you could go to all the trouble of making a transgenic plant based on that chemical test and have it not work."

To get the toxins into the fly larvae, the scientists allowed Hessian flies to lay eggs on the leaves of seedling wheat plants. When the eggs hatched, the plants were taken from the soil, their roots cleaned and trimmed, and then replanted as hydroponics with the toxic proteins added to the plants' water.

"The plant is just acting like a big straw taking up the toxins," Williams said. "It's just like putting a carnation into a cup of colored water and watching the flower change colors."

When the fly larvae attacked and fed as usual, they were also ingesting the toxins that were taken up through the water.

"We knew they would feed on the plant," said Subhashree Subramanyam, a Purdue agronomy research associate. "So we used the plant as the translocation medium."

Protein immunoblot detection tests, which use antibodies to detect the presence of a particular protein, showed that the larvae had ingested the toxins added to the water.

The team tested nine lectins ¨l antinutrient proteins that disrupt digestive function. In particular, Hessian fly larvae responded to snowdrop lectin, which comes from snowdrop bulbs, a flowering plant.

Larvae that ingested the snowdrop lectin developed only half as fast as the control larvae. There was also evidence of disruption of the microvilli ¨l fingerlike extensions in the midgut that aid in nutrient uptake.

"It is possible that snowdrop lectin, by itself, could give wheat better resistance to the Hessian fly," Shukle said.

The scientists plan to have a transgenic version of the wheat developed for further testing. The USDA funded their work.

A publication-quality photo is available at http://news.uns.purdue.edu/images/2011/shukle-hessianlarvae.jpg

Abstract for the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/111212ShukleTransgenic.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>