Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wheat can't stop Hessian flies, so scientists find reinforcements

13.12.2011
Wheat's genetic resistance to Hessian flies has been failing, but a group of Purdue University and U.S. Department of Agriculture scientists believe that other plants may soon be able to come to the rescue.

The Purdue and USDA research team developed a method to test toxins from other plants on Hessian fly larvae. The test simulates the effect of a transgenic plant without the lengthy and costly procedures necessary to actually create those plants.

"For years, people have tried to develop a bioassay, but that hadn't happened until now," said Richard Shukle, a research scientist with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit working in Purdue Entomology, whose findings were published in the Journal of Insect Physiology.

Shukle said the 33 genes known to give wheat resistance to Hessian fly attacks have been failing, causing scientists to develop methods to stack those genes together as a defense. But another solution could include adding other plants' toxins to wheat to bolster its defenses.

The problem has been with the unique way in which Hessian fly larvae attack and feed off wheat. The larvae secrete a substance onto the plants that creates a sort of wound on the plant tissue, opening it up for the larvae to feed on.

Toxins can be tested on other pests by adding those toxins to a plant-based artificial diet and feeding them to the insects. But Hessian fly larvae won't take the bait, meaning that until now the only way to test poisons from other plants was to create lines of transgenic wheat and feed them to the flies.

"This feeding assay is significant. This gives us a way to test these toxins," said Christie Williams, a co-author of the findings and a research scientist with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit working in Purdue Entomology. "A preliminary chemical assay might give us promising results. But then you could go to all the trouble of making a transgenic plant based on that chemical test and have it not work."

To get the toxins into the fly larvae, the scientists allowed Hessian flies to lay eggs on the leaves of seedling wheat plants. When the eggs hatched, the plants were taken from the soil, their roots cleaned and trimmed, and then replanted as hydroponics with the toxic proteins added to the plants' water.

"The plant is just acting like a big straw taking up the toxins," Williams said. "It's just like putting a carnation into a cup of colored water and watching the flower change colors."

When the fly larvae attacked and fed as usual, they were also ingesting the toxins that were taken up through the water.

"We knew they would feed on the plant," said Subhashree Subramanyam, a Purdue agronomy research associate. "So we used the plant as the translocation medium."

Protein immunoblot detection tests, which use antibodies to detect the presence of a particular protein, showed that the larvae had ingested the toxins added to the water.

The team tested nine lectins ¨l antinutrient proteins that disrupt digestive function. In particular, Hessian fly larvae responded to snowdrop lectin, which comes from snowdrop bulbs, a flowering plant.

Larvae that ingested the snowdrop lectin developed only half as fast as the control larvae. There was also evidence of disruption of the microvilli ¨l fingerlike extensions in the midgut that aid in nutrient uptake.

"It is possible that snowdrop lectin, by itself, could give wheat better resistance to the Hessian fly," Shukle said.

The scientists plan to have a transgenic version of the wheat developed for further testing. The USDA funded their work.

A publication-quality photo is available at http://news.uns.purdue.edu/images/2011/shukle-hessianlarvae.jpg

Abstract for the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/111212ShukleTransgenic.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>