Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for the right moment

26.08.2010
Bacterial pathogens delay their entry into cells

Pathogens make themselves feel at home in the human body, invading cells and living off the plentiful amenities on offer. However, researchers at the Max Planck Institute for Infection Biology, Berlin, together with colleagues at Harvard University, reveal an opposite strategy used to ensure infection success. Pathogens can actually delay their entry into cells to ensure their survival. Upon cell contact, bacteria trigger a local strengthening of the cellular skeleton with the aid of signalling molecules, allowing them to remain outside the cell. The researchers also show that this strategy, unknown until now, is used by certain intestinal pathogens as well. (PLoS Biology, 24th of August 2010)


Neisseria gonorrhoeae bacteria, forming micro-colonies on the surface of a human cell, stimulate signals to stabilize their extracellular life style. Image: Max Planck Institute for Infection Biology

Infection with the sexually transmitted bacterium Neisseria gonorrhoeae can lead to an inflammation of the urogenital tract, the uterus and ovaries. By means of thread-shaped proteins on its surface called pili, the bacterium attaches itself to the cell membrane. Once attached, the bacteria undergo rapid changes of their surface structure to avoid recognition by the host’s immune system. Only during the later stages of infection will the pathogens penetrate cells and occasionally advance into deeper tissues to find further breeding ground.

Until now scientists were firmly focused on understanding the tricks used by these pathogens to enter cells. The results of the Berlin-based researchers suggest, however, that bacteria may spend as much effort in resisting cell entry. Host cells tend to generate tiny vesicles by which they transport bacteria inadvertently into the interior. The researchers have now shed some light on the signals which prevent the bacteria from being ‘swallowed’. Upon fastening themselves to the cell surface, the bacteria induce a sequence of events that results in the strengthening of the cell skeleton directly beneath the point of attachment. The structural protein Actin is transported to attachment sites, where it forms a strong, supportive chain. In tandem, another structural protein Caveolin-1 and the signalling proteins VAV2 and RhoA are recruited to the cell membrane where they play a central role in effectively maintaining N. gonorrhoeae in the extracellular milieu.

Better outside than inside

These results have opened up new perspectives in understanding the course of infections: "For a long time it was thought that most pathogens strive to enter cells quickly. However, the opposite may be the case. It seems the bacteria prolong their extracellular existence in order to survive", declares Thomas F. Meyer of the Max Planck Institute of Infection Biology. By anchoring to the cell via pili proteins and assembling an underlying support skeleton, the pathogen is buffered against the often inhospitable conditions of the extracellular environment.

By extrapolating their findings to the intestinal bacteria Escherichia coli, the scientists have indicated that the strategy of delaying entry into cells to ensure survival may be widespread among pathogens, possibly even the bacterial agents of meningitis and pneumonia. These newly discovered signalling pathways may therefore have exciting implications for the prevention of infection.

Original work:

Jan Peter Boettcher, Marieluise Kirchner, Yuri Churin, Alexis Kaushansky, Malvika Pompaiah, Hans Thorn, Volker Brinkmann, Gavin MacBeath, Thomas F. Meyer
Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2-RhoA-mediated cytoskeletal rearrangements

PLoS Biology, August 24, 2010

Contact:

Prof. Dr. Thomas F. Meyer
Max Planck Institute for Infection Biology, Berlin
Tel.: +49 30 28 460-400
E-mail: meyer@mpiib-berlin.mpg.de

Barbara Abrell | EurekAlert!
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>